

Names: Saleh Alkredes - Faisal Alfawaz Group: DATA - ASU Capstone Project Sponsored By: <u>Yanbor LLC</u> Website: <u>OUReport.com</u>

OUReport.net
Matrix Balancing Report
Youth Tobacco Usage

Preview:

Tobacco use among youth is a critical public health concern, with significant implications for both current and future generations. The dataset provided captures key information on tobacco use patterns among adolescents across various demographics, **including location, gender, race, age, and education.** The data spans multiple years, offering a comprehensive view of the evolving landscape of youth tobacco consumption. The data was sourced from Data.Gov (<u>https://catalog.data.gov/dataset/youth-tobacco-survey-yts-data</u>).

In this comprehensive report, we undertake a rigorous analysis of youth tobacco usage data through a series of distinct analytical scenarios: Scenarios 2a, 2b, 2c, 3a, 3b, 3c, 4a, and 4b. The data we analyze spans the years 1999 to 2017 and originates from the Centers for Disease Control and Prevention (CDC). It is part of the State Tobacco Activities Tracking and Evaluation (STATE) System, specifically the Youth Tobacco Survey (YTS) data.

In the pursuit of our analytical objectives, each of the specified scenarios is meticulously applied. Our aspiration is to undertake a thorough and all-encompassing analysis, leaving no stone unturned. The objective is to reveal the intricacies and subtleties hidden within the dataset, ultimately leading to the illumination of valuable insights. The results of these analytical endeavors are presented with precision, fostering a deeper comprehension of the dataset and its underlying patterns.

Scenarios:

Scenario 2a: In this scenario, we embark on the task of constructing the Starting Matrix of aggregated field1 to achieve equilibrium in the sums of rows and columns of the Target Matrix of the aggregated field2.

Scenario 2b: Our exploration continues as we determine the initial value of field2, facilitating the generation of the Starting Matrix of field1 values. We also establish the target value of field2, which in turn enables us to construct the Target Matrix. Our aim is to harmonize these Matrix by balancing the sums of selected columns.

Scenario 2c: This scenario entails the derivation of balancing coefficients for the Starting Matrix of field1. These coefficients play a pivotal role in achieving equilibrium in the sums of rows and columns, as we transition from the initial to the target values of field2.

Scenario 3a: Here, we delve into the intricacies of acquiring balancing coefficients for the Starting Matrix of aggregated values of field1. Our goal extends to handling multiple Target Matrix of aggregated selected fields, with the intention of ensuring a harmonious balance.

Scenario 3b: In this scenario, we construct the Starting Matrix, organized as rows by matrix group field for rows. Additionally, we select multiple columns for the purpose of achieving equilibrium during iterations that traverse from the starting to the target values of field2.

Scenario 3c: Our exploration continues as we seek to derive the essential balancing coefficients for the Starting Matrix, arranged as rows by matrix group field, and spanning rows and columns from selected multiple fields. This meticulous process is executed across all iterations, bridging the divide between the starting and target values of field2.

Scenario 4a: This scenario is dedicated to establishing the Starting Matrix of aggregated field1. The objective is to create a balanced state in the sums of selected columns within the Target Matrix of the aggregated field2.

Scenario 4b: We venture into the complexities of determining the starting value of field2, which subsequently aids in the construction of the Starting Matrix of field1 values. We also define the target value of field2, enabling the creation of the Target Matrix. Our mission extends to achieving equilibrium by balancing the sums of selected columns.

Furthermore, our data management strategy extends to the astute utilization of the OUreports feature. This feature facilitates the seamless transfer of data into an adaptable platform, specifically Excel. By capitalizing on the capabilities of Excel, we empower ourselves to execute advanced data manipulation techniques and perform intricate calculations. This strategic use of Excel's functionalities enriches the depth and scope of our data analysis, thereby culminating in a more profound and insightful exploration of the dataset.

In essence, this report is a testament to our unwavering commitment to a meticulous and thorough analysis of data. Our journey navigates through a wealth of tobacco usage data with the ultimate aim of extracting meaningful insights that have the potential to inform decisions, enrich knowledge, and contribute to a more profound understanding of the subject matter at hand

Scenario List:

2a: Starting Matrix of aggregated field1 to balance for sums of rows and columns of the Target Matrix of the aggregated field2

2b: The starting value of field2 to get the Starting matrix of field1 values and target value of field2 to get Target matrix

2c: Get balancing coefficients for Starting Matrix of field1 for all iterations between starting and target values of the field2

3a: Get balancing coefficients for Starting Matrix of aggregated values of field1 and multiple Target Matrix of aggregated selected fields

3b: Starting Matrix as rows by matrix group field for rows and selected multiple columns to balance iterations from starting to target values of the field2

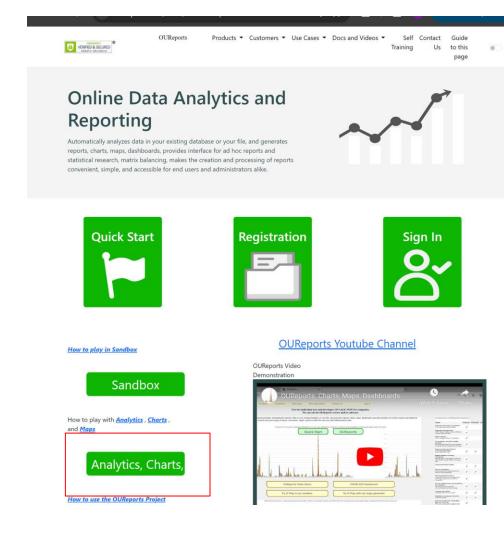
3c: Get balancing coefficients for Starting Matrix as rows by matrix group field for rows and columns from selected multiple fields, for all iterations between starting and target of the field2 values 9.

4a: Starting Matrix of aggregated field1 to balance for sums of selected columns of the Target Matrix of the aggregated field2

4b: The starting value of field2 to get the Starting matrix of field1 values and target value of field2 to get Target matrix, and balance by sums of selected columns

Scenario Implementation:

We have executed the following scenarios:


Scenario 2a Scenario 2b Scenario 2c Scenario 3a Scenario 3b Scenario 3c Scenario 4a

Scenario 4b

- **Data Selection:** Our dataset comprises information related to tobacco usage, encompassing factors such as Location, Year, IDs, year to date, Reporting Period and more.
- Analysis and Comparison: Through the application of each Scenario, we have conducted an in-depth analysis and comparison of the dataset. This includes identifying patterns, trends, and correlations within the data.
- **Excel Utilization:** To enhance our analysis capabilities, we have employed Excel's features to manipulate and transform the dataset. This allows us to perform advanced calculations and visualize results effectively

We have opted for a diverse range of data sources. For each scenario (2a- 4b), we employed the youth tobacco usage dataset as an illustrative example. Our objective is to demonstrate and evaluate the functionalities of the OUReport tools through the utilization of this dataset. With comprehensive details encompassing tobacco usage summaries, Location, Years, IDs, this dataset provides a robust context for showcasing the flexibility of the OUReport features.

HOW TO IMPORT DATA:

Online Data	Analytics and Reporting	
◇ Log Off;◇ List of Reports	List of reports Log off	
 ♦ Contact us ● Documentation 	Data Import	Reports affected:
	Insert into new table: Tobacco survey_1999_2017	
	or into existing table:	$\mathbf{\tilde{\mathbf{v}}}$
	Image: Contract of the stable before upload csv file delimiter: [,]	
	Select file to upload: Choose File(s) 1 file	
	or from web site: https://	
	Upload formatted file(s) into table(s).	
	Result:	
	Report Title:	
		le
	Data Query Text:	
		le
	Date and Time of Import:	
		11
	Report ID:	

1- the name of the DATA will be shown on the "Analytics, Chart" page

2- select the (CSV) file that you want to import. In our case, we will import the "Tobacco survey_1999_2017.csv"

Show Rep	ort: Data imported inte	o tobacco_survey_1	999_2017 on 11-8	-2023 12-48-12 AI	Reset	School	duin report Holp													
Graphs: axi			🗸 , axis Y		aggregate Court		oup or den													
	Google Charts Dashboard			Date 0	Pe La															
hade cha	kate scards		inarch:	~	~	Seath Not	t Created by Desig	iner.												
44 4 3	ates P 30 0	je inst. Marst	1																	
Data	imported in	nto tobacco	survev 1	999 2017																
		8-2023 12-			-															
	EAR LocationAbl	br LocationDesc	TopicDesc	MeasureDesc	DataSource	Response	DataValueUnit	DataValueType	DataValue	DataValueStdErr LowConfid	enceLimit HighConfidenc	eLimit Sar	mpleSize Gender	Race	Age	Education	GeoLocation	Topis TypeId	Topiald	
	1999 CK	Okiahoma	Smokeleus Tabacco	User Status	YTS	Frequent		Percentage	2.8	.08	17	3.9	1029 Male	Al Ram	All April	Middle School	(35.472031355	DCH.	151004	
	1909 NJ	New Jersey	Cigarette Use (Youth)	Smoking Status	YTS	Frequent		Percentage	27	0.4	15	2.9	8371 Overall	All Races	All Ages	Middle School	(40 130570048 .74 273091288)	BEH	1068CH	
	1609 AR	Arkansas	Cigarette Une (Youth)	Senciong Status	YTS	Fuer		Percentage	04	5.5	50.2	71.6	102 Main	Al Races	All April	Midde School	(34 740050124	REH	1068EH	
•	1969 GA	Georgia	Cessation (Youth)	Quit Attempt in Past	YTS .			Percentage	47.3	73	35	616	79 Maie	All Rares	All Ages	Middle School	-32 274490743) (32 839681093	REH	105REH	
				Year Among Current Cigarette Strokors													-83 (27580346)			
	1999 TN	Tennessoo	Smokoloss Tobacco Use (Youth)	User Status	YTS	Ever		Percentage	70.2	3.5	41.5	66.1	710 Maie	All Races	All Agos	High School	(35.58094058, -85.774490914)	BEH	1518EH	
	1999 NC	North Carolina	Cessation (Youth)	Guit Attempt in Past Year Among Curtert Cigarette Smokers	YTS			Percentage	42.5	21	38.3	40.7	808 Maie	All Races	AllAgos	High School	(36.496220975) -79.156250463)	BEM	1058EH	
	1999 NC	North Carolina	Cigarette Use (Youth)	Smoking Status	YTS	Current		Percentage	3.8	13	27.1	32.3	31/4 Hemaile	Al Races	AllAges	High School	(35.495220975. 79.159250463)	BEH	109864	
	1999 MS	Missespe	Smokeless Tobacco	User Status	YTS	Gurrent		Percentage	51.2	16	15.1	21.3	710 Male	All Races	All Ages	High School	(32,745510099, 89,530030525)	BEH	151BEH	
	1999 CA	Ceorgia	Smokeless Tobacco Use (Youth)	User Status	YTS	Current		Percentage	12	,	24	6.4	1295 Overall	Al Races	All Ages	Middle School	(32 839051093 83 827580346)	DEH	1910CH	
	1999 SD	South Dakota	Smokeless Tobacco	User Status	YTS	Frequent		Percentage	11.4	0.5	0	1.4	963 l'emale	All Races	All Ages	Middle School	(44.353130063.	DEH	161DCH	
	1959 NC	Netraska	Use (Youll) Smokeless Tobacco	User Status	YTS	Cunent		Percentage	0.6	0.3	0.9	21	1619 Female	All Races	AllAges	Middle School	-100 373530637) (41 641040906001,	DEH	151DCI I	
	1959 OK	Oklahoma	Use (Youth) Smokeless Tobacco		YTS	Ever		Percentage	11	17	152	22	2080 Overall	Al Races	All Ages	Middle School	(35 472031358)	DCH	151001	
	1909 8/6	Kernes	Use (You8) Smokeless Tobacco		YTS	Ever		Percentage	39		10.1	33.0	581 Main	Al Rates	All Ages	Makie School	.97 521070214)	051	161001	
	1999 KS		Live (Youth)		YTS			1				91					(38.3477403 (38.200781227) (40.130570048	BEH BEH	1510CH	
		New Jerney	Smokeless Tabacco Lise (Youth)			Ever		Percentage	2.3		73		8166 Overall	Al Rams	All Ages	Middle School	-74 275691288)			
	1969 NJ	New Jersey	Smokeless Tabacco Use (Youth)		YTS.	Ever		Percentage	39		51	73	4112 Female	Al Races	AllAges	Middle School	(40 130570048 -74 273091288)	BEH	151REH	
	1969 OK	Oklahoma	Cigarette Use (Vouth)	Smoking Status	YTS	Current		Pricentage	\$7	2.4	11 1	20.5	1004 Female	At Rens	AB Ages	Middle School	(35.472031356 -97.521070214)	REH	1068FH	
	1969 OK	Oklehorea	Smokeless Tobaron Use (Youth)	Uner Status	YTS	Finguent		Percentage	34	0.7	42	68	1908 Overvall	All Rarzs	All Ages	High School	(35 472031356	RFH	151RFH	
	1909 NC	North Carolina	Cigarette Une (Youth)	Smoking Statun	YTS.	Frequent		Percentage	11.6	0.4	13	27	2035 Female	All Rares	All Ages	Middle School	(35 496220975	BEH	100REH	
	1999 GA	Georgia	Cigarette Use (Youth)	Smoking Status	YTS	Frequent		Percentage	60.1	1	10	5.9	1287 Overall	All Races	All Ages	Middle School	(32 839681093.	BEH	1008EH	
	1999 MO	Mesouri	Cessalon (Youth)	Quit Alternat in Past	YTS			Percentage	6.3	31	54.1	86.1	210 Overall	At Races	All April	Midde School	-83 627690340) (30 636790776.	DEH	1050CH	
				Year Among Current Cigarette Smokers													92.566000053)			
	1999 OK	Oklahorea	Cigarette Use (Youth)	Smoking Status	YTS	Frequent		Percentage	05.4		2.2	6	1004 Ferrule	All Races	All Ages	Middle School	(25.472031356 -87.521070214)	BCH	106DEH	
	1959 AKS	Masissippi	Cigarette Use (Youth)	Smoking Status	YTS	Current		Percentage	14.7	1.5	16.6	22	686 Female	Al Razes	All Ages	Middle School	(32 745510099 - 89 538030875)	BEH	1050.00	
	1969 NC	North Carolina	Organette Use (Youth)	Smoking Status	YTS	Ever		Percentage	9.6	16	63.2	89.6	3243 Female	Al Rarzs	All Ages	High School	(35 456220976 .70 155250453)	REH	100RFH	
	1909 NJ	Now Jensory	Cigarette Use (Youth)	Smoking Status	YTS	Ever		Percentage	28.4	1.8	312	38.2	8196 Overall	Al Races	All Ages	Midde School	(40 130570048	REH	105RFH	
	1999 NC	North Carolina	Smokeless Tabacco	User Status	YTS	Current		Percentage	44.4	0.8	47	79	2836 Male	All Rares	All Ages	Middle School	(35 456220975	вен	1518EH	
	1909 NJ	Now Jersey	Use (Youth) Smokeless Tabacco	User Status	YTS	Ever		Percentage	40.5	11	217	20.1	3052 Male	All Races	AllAgos	High School	-79 155250463) (40 130570048	BEH	1518EH	
	1999 NC	North Carolina	Use (Youth) Smokeless Tabacco	User Status	YTS	Ever		Percentage	63.5	11	19.4	23.6	6254 Overall	Al Races	All April	High School	-74.273091288) (36.406220975	BEH	1618EH	
	1909 AR	Arkansas	Use (Youth) Smokeless Tobacco		YTS	Frequent		Percentage	24.4		03	67	202 Male	All Races	All Apos	Middle School	-79.156250463) (34.748050124	BEH	1018EH	
	1999 MC	Missoun	Smokeless lobacco Use (Youth) Smokeless lobacco		Y15	Frequent		Percentage	34.4			0.4	728 Female	All Races	All Agos	Middle School	-92 274490743) 738 635790776	BEH	1518EH	
			Use (Youth)														-92.566300053)			
	1909 IN	lennessee	Smokeless lobacco Use (Youth)		YIS	Frequent		Percentage	06		2.6	5.6	1458 Overall	AT Races	All Ages	High School	(35.58094058, -85.774590914)	BEH	101BEH	
	1969 OK	Okahoma	Cigarette Use (Youth)	Smoking Status	¥1\$	Frequent		Percentage	25	1.1	4.5	8.7	500 Maie	At Races	All Ages	Middle School	(35.4/2031356) 97.521070214)	BEH	1068EH	
	1999 OK	Oklahoma	Cessation (Youth)	Gut Attempt in Past Year Among Current Cigarette Smokers	412			Percentage	0	2.7	52	62.6	301 Female	AT Races	All Ages	High School	(35.4/2031366. 97.521070214)	BEH	1068EH	1
		New Jackey	Smokeless Tobacco		YTS	Frequent		Percentage	0.3	0.2	0.2	0.0	4153 Female	All Races	All Ages	Middle School	(10 130570046	OCH	151DCI I	

Here is a screenshot of our Data in Excel:

AutoSave (🛕 Salel	h Abdullah S	5A —	
e <u>Home</u>	Insert Draw Page Layo	ut Formulas	Data Re	eview V	'iew A	utomate	e Help	Power P	ivot											D	Comments	🖻 Share
Cut	Calibri	~ [11 ~] A	A^ A [*] ≡	= =) 🧞 🗸		ab Wr	ap Text		General) <u>e</u>		° Ž ∕S	7 Q			
aste	¨ B I U ∽	⊞ • <u>∿</u> •	<u>A</u> • ≡	= =			📴 Me	erge & Center		\$ ~ 9		Conditional ormatting ~		s Cell		rt Delete Form			& Find & ✓ Select \		Add-ins	Analyze
 V Forn Clipboard 	mat Painter	Font	ات ا			Alignment	1		R.	N	r اumber آيا		Styles	Styles .		Cells	🞸 Clear 🗸	Editing	• select •	Sensitivity	Add-ins	Data
	ATA LOSS Some features might b		this workbook	k in the cor		-		To preserve	these fea				how aga	in Sav	ve As							
~	$X \sim f_x$ Year																					
																				AE AF		
	LocationDe TopicDesc MeasureDe DataSo Oklahoma Smokeless User Statu: YTS	Frequent %	Value Data_Value D Percentage	Data_ValueDat 2.8	ta_ValueLow 0.6	(_Confic High 1.7	1_Confi Sam 3.9	ple_SizGender 1029 Male	Race	Age All Ages	Education GeoLocaticTopi Middle Sch (35.47203; BEH	cTypel TopicId 151BEH		d Stratificati 2GEN		SubMeasurDisplayO YTS12	rd SP MS 2 28.812 18.7278	Smokers Tc Ma 29	ile Smok Ferna 19	ale Smokers 10		
	New Jersey Cigarette USmoking St YTS	Frequent %	Percentage	2.8	0.6	1.7	2.9	8371 Overall	All Races		Middle Sch (40.13057(BEH	106BEH	169055 16655A	1GEN			9 184.162 119.7053	185	19	65		
1999 GA	Georgia Cessation (Quit Attem YTS	%	Percentage	47.3	7.3	33	61.6	79 Male	All Races		Middle Sch (32.83968: BEH	105BEH		ZGEN			5 37.367 24.28855	38	25	13		
1999 NC 1999 KS	North Caro Cessation (Quit Attem YTS Kansas Smokeless User Statu: YTS	% Frequent %	Percentage Percentage	42.5	2.1	38.3 0.3	46.7	898 Male 573 Male	All Races All Races		High Schoo (35.46622(BEH Middle Sch (38.34774(BEH	105BEH 151BEH	169QUA 169USS	2GEN 2GEN			5 381.65 248.0725 2 10.314 6.7041	382 11	249	133		
1999 TN	Tennessee Cessation (Percent of YTS	%	Percentage	48.6	5	38.8	58.4	233 Female	All Races		High Schoo (35.68094(BEH	105BEH	170CES	3GEN			3 113.238 73.6047	114	74	40		
	Oklahoma Cigarette USmoking St YTS	Current %	Percentage	34	2.3	29.4	38.6	908 Female	All Races		High Schoo (35.47203: BEH	106BEH	1665SA	3GEN	onone	11007	7 308.72 200.668	309	201	108		
1999 TN 1999 TN	Tennessee Smokeless User Statu: YTS Tennessee Cigarette USmoking St YTS	Frequent % Ever %	Percentage Percentage	7.7	1.1	5.5	9.9 77.8	742 Male 706 Female	All Races All Races		High Schoo (35.68094(BEH High Schoo (35.68094(BEH	151BEH 106BEH	169USS 166SSA	2GEN 3GEN			3 73.948 48.0662 2 1.914 1.2441	74	49	25		
1999 NE	Nebraska Cessation (Percent of YTS	%	Percentage	13.7	4.7	43.3	61.9	268 Overall	All Races		Middle Sch (41.64104(BEH	105BEH	170CES	1GEN		YTS01	2 0 0	0	0	0		
	Arkansas Smokeless User Statu YTS	Ever %	Percentage	0.1	3.3	32.9	45.7	194 Male	All Races		Middle Sch (34.74865(BEH	151BEH	169USS	2GEN		11311	7 333.891 217.0292	334	218	116		
	Oklahoma Cessation (Percent of YTS Mississippi Cessation (Quit Attem YTS	%	Percentage Percentage	0.5	1.9 3.2	52.4 52.9	60 65.3	523 Overall 233 Male	All Races All Races		High Schoo (35.47203:BEH High Schoo (32.74551(BEH	105BEH 105BEH	170CES 1690UA	1GEN 2GEN			2 12.411 8.06715 6 400.95 260.6175	13 401	9 261	4		
	North Caro Smokeless User Statu YTS	Current %	Percentage	0.9	0.3	1.3	2.3	3282 Female	All Races		High Schoo (35.46622(BEH	151BEH	169USS	3GEN			43.695 28.40175	44	29	15		
	North Caro Cigarette USmoking St YTS	Current %	Percentage	14.6	1.1	12.8	17.2	5657 Overall	All Races		Middle Sch (35.46622(BEH	106BEH	166SSA	1GEN			8 154.125 100.1813	155	101	54		
1999 MS 1999 TN	Mississippi Smokeless User Statu: YTS Tennessee Cessation (Percent of YTS	Current %	Percentage Percentage	8.5 0.3	0.9	0 46.7	3.4 67.3	832 Female 144 Overall	All Races All Races		High Schoo (32.74551(BEH Middle Sch (35.68094(BEH	151BEH 105BEH	169USS 170CES	3GEN 1GEN			0 84.014 54.6091 9 3.716 2.4154	85 4	55 3	30 1		
1999 TN	Tennessee Cessation (Quit Attern YTS	%	Percentage	11.3	5.7	42.5	64.7	75 Female	All Races	All Ages	Middle Sch (35.68094(BEH	105BEH		3GEN	6RAC	YTS06	1 171.456 111.4464	172	112	60		
	Mississippi Smokeless User Statu: YTS	Ever %	Percentage	49	2.3	19.8	28.8	1469 Overall	All Races		High Schoo (32.74551(BEH	151BEH	169USS	1GEN			9 30.636 19.9134	31	20	11		
1999 TN 1999 GA	Tennessee Smokeless User Statu YTS Georgia Cessation (Percent of YTS	Current %	Percentage Percentage	68.3 0.6	4.8	1.8	5.6 61.5	712 Female 156 Overall	All Races All Races		High Schoo (35.68094(BEH Middle Sch (32.83968: BEH	151BEH 105BEH	169USS 170CES	3GEN 1GEN			2 8.622 5.6043 9 38.295 24.89175	9 39	6 25	3		
L999 NJ	New Jersey Cessation (Percent of YTS	%	Percentage	60.6	2.3	51.9	61.1	673 Male	All Races		High Schoo (40.13057(BEH	105BEH	170CES	2GEN	6RAC	YTS02 1	1 291.36 189.384	292	190	102		
	North Caro Smokeless User Status YTS	Current %	Percentage	1.6	0.5	3	4.8	5893 Overall	All Races		Middle Sch (35.46622(BEH	151BEH	169USS	1GEN			9 17.952 11.6688	18	12	6		
1999 NJ 1999 AR	New Jersey Cessation (Quit Attem YTS Arkansas Cigarette USmoking St YTS	Ever %	Percentage Percentage	23	3.8 5.5	45.5 50.2	60.5 71.8	304 Male 192 Male	All Races All Races	All Ages All Ages	Middle Sch (40.13057(BEH Middle Sch (34.74865(BEH	105BEH 106BEH	169QUA 166SSA	2GEN 2GEN			6 83.08 54.002 1 1139.65 740.7725	84 1140	55 741	29 399		
1999 MS	Mississippi Smokeless User Statu: YTS	Current %	Percentage	51.2	1.6	15.1	21.3	710 Male	All Races	All Ages	High Schoo (32.74551(BEH	151BEH	169USS	2GEN	6RAC	YTS10	8 141.363 91.88595	142	92	50		
1999 NE	Nebraska Smokeless User Statu: YTS	Current %	Percentage	0.6	0.3	0.9	2.1	1649 Female	All Races All Races		Middle Sch (41.64104(BEH	151BEH	169USS	3GEN 1GEN			2 0.937 0.60905 1 158.522 103.0393	1	1	0		
1999 OK 1999 NJ	Oklahoma Smokeless User Statu: YTS New Jersey Smokeless User Statu: YTS	Ever % Frequent %	Percentage Percentage	1.1	0.2	15.2 0.2	22	2088 Overall 4153 Female	All Races All Races		Middle Sch (35.47203: BEH Middle Sch (40.13057(BEH	151BEH 151BEH	169USS 169USS	1GEN 3GEN			1 158.522 103.0393 0 8.162 5.3053	159 9	104 6	55 3		
1999 TN	Tennessee Cessation (Percent of YTS	%	Percentage	1	6.4	48.2	73.2	72 Female		All Ages	Middle Sch (35.68094(BEH	105BEH	170CES	3GEN			1 719.759 467.8434	720	468	252		
1999 NC 1999 TN	North Caro Cigarette USmoking St YTS Tennessee Smokeless User Statu: YTS	Current % Ever %	Percentage Percentage	10.1 6.1	1.1	11.9 4.6	16.1 8.4	2935 Female 619 Female	All Races All Races		Middle Sch (35.46622(BEH Middle Sch (35.68094(BEH	106BEH 151BEH	166SSA 169USS	3GEN 3GEN			1 80.652 52.4238 1 109.824 71.3856	81 110	53 72	28 38		
	Mississippi Smokeless User Statu YTS	Ever %	Percentage	9.9	2.2	23.3	31.9	897 Male		All Ages	Middle Sch (32.74551(BEH	151BEH	169USS	2GEN		YTS11	7 49.92 32.448	50	33	17		
1999 TN	Tennessee Cigarette USmoking St YTS	Current %	Percentage	47.6	1.9	10.1	17.7	586 Female	All Races	All Ages	Middle Sch (35.68094(BEH	106BEH	166SSA	3GEN			9 14.574 9.4731	15	10	5		
	Arkansas Smokeless User Statu: YTS South Dakc Cigarette USmoking St YTS	Current % Frequent %	Percentage Percentage	9.1 61.6	1.8 0.8	10.6 1.9	17.6 4.9	944 Overall 962 Male	All Races All Races		High Schoo (34.74865(BEH Middle Sch (44.35313(BEH	151BEH 106BEH	169USS 166SSA	1GEN 2GEN		11010	9 89.298 58.0437 0 101.17 65.7605	90 102	59 66	31 36		
1999 SD 1999 NC	North Caro Cigarette USmoking St YTS	Current %	Percentage	1.7	1.4	13.2	18.8	2715 Male	All Races		Middle Sch (35.46622(BEH	106BEH	16655A	2GEN 2GEN			1 76.398 49.6587	77	50	27		
1999 KS	Kansas Cessation (Percent of YTS	%	Percentage	0.3	5.6	32.3	54.3	63 Female	All Races	All Ages	Middle Sch (38.34774(BEH	105BEH	170CES	3GEN			1 182.81 118.8265	183	119	64		
	Mississippi Smokeless User Statu YTS Mississippi Smokeless User Statu YTS	Frequent % Current %	Percentage	9.6 50.3	0.2	0 7.9	0.7	832 Female 1550 Overall	All Races All Races		High Schoo (32.74551(BEH High Schoo (32.74551(BEH	151BEH 151BEH	169USS 169USS	3GEN 1GEN			3 27.279 17.73135 8 94.36 61.334	28 95	18 62	10 33		
1999 TN	Tennessee Cigarette USmoking St YTS	Ever %	Percentage	2.4	2.2	39.9	48.5	1236 Overall	All Races		Middle Sch (35.68094(BEH	106BEH	16655A	1GEN		YTS08	2 0 0	0	0	0		
	Missouri Cigarette USmoking St YTS	Ever %	Percentage	1.2	2.1	43.2	51.6	761 Male	All Races		Middle Sch (38.63579(BEH	106BEH	16655A	2GEN			1 25.515 16.58475	26	17	9		
	New Jersey Cigarette USmoking St YTS Oklahoma Smokeless User Statu: YTS	Ever % Current %	Percentage Percentage	65 47.4	1.9	59.5 11.1	66.9 14.9	3331 Male 1908 Overall	All Races All Races		High Schoo (40.13057(BEH High Schoo (35.47203: BEH	106BEH 151BEH	166SSA 169USS	2GEN 1GEN		YTS08 YTS10	2 104.328 67.8132 8 402.288 261.4872	105 403	68 262	37 141		
	Tobacco survey 1999 2017	+		.714				Jeer Steran	Hoces			LUTUEN						405				

2a) Field1 to Field2 Target Matrix Balancing: The starting matrix aggregates values from field1. The balancing task is to match the sums of rows and columns to those of a target matrix that aggregates values from field2. The goal here is to balance this starting matrix to match the sums of rows and columns of a target matrix, which is aggregated from a different field (field2).

Select Scenario: [2a: Starting Matrix of aggregated field1 to balance for sums of rows and columns of the Target Matrix of the aggregated field2 2a: Starting Matrix of aggregated field1 to balance for sums of rows and columns of the Target Matrix of the aggregated field2	~
Matrix rows by: LocationDesc Columns by: YEAR Matrix items by field1: MaleSmokers aggregation function: Sum terations by the field2: SmokersTotal aggregation function: Sum	Steps: 100 Precision: 1 adjust by start matrix Partial rows/columns: 0,0
(2a) Balancing matrix of field1 for the sums by rows and by columns of the matrix of field2	

Balanced, precision: 0.84874, steps: 8, maximum difference of cells in balancing and target matrixs = 12.27, maximum difference of cells in balancing and starting matrixs = 7429.92

p1) Starting Matrix: The starting matrix is similar to the target matrix, but the values in the matrix are the sum of the 'MaleSmokers' multiplying column SmokersTotal. This matrix gives us a snapshot of the data value in each district, broken down by Location and year

LocationDesc	Sum of Sum of MaleSmokers by LocationDesc	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	201
Alabama	17968	3573	0	0	1880	0	1771	0	2366	0	1072	0	1041	0	1924	0	2399	0	1942	0
Arizona	9145	0	692	0	0	1579	0	1237	0	2143	0	858	0	1067	0	425	0	732	0	412
Arkansas	16855	2071	1585	0	0	0	0	5536	0	4391	0	0	3272	0	0	0	0	0	0	0
California	3577	0	1117	0	0	2460	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colorado	3398	0	3398	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Connecticut	15745	0	3309	0	2178	0	0	2189	0	1637	0	1356	0	2109	0	2243	0	724	0	0
Delaware	16645	0	3615	0	930	0	2817	0	0	0	955	0	1826	0	1736	0	1266	0	3500	0
District of Columbi	a 3603	0	3603	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Florida	4835	0	0	3575	1260	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Georgia	18727	5031	0	1402	0	0	0	3706	0	0	0	1573	0	3852	0	2069	0	964	0	130
Guam	138	0	0	0	138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hawaii	18222	0	1689	0	0	738	0	1136	0	0	0	989	0	2074	0	738	0	10858	0	0
Idaho	4647	0	0	645	0	4002	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Illinois	20296	0	0	0	9313	0	0	828	2565	0	0	0	3215	0	0	2112	0	2263	0	0
Indiana	13608	0	2758	0	0	0	-	0	1371	-	-			0	0	1871	0	0	731	0
lowa	12687	0		0	2141	0		0	2023			-		0	0	0	0	0	0	0
Kansas	8244	417		0	746	0		0	0	0	0			0	0	850	0	-	0	0
Kentucky	15760	0	1560	0	2611	0	-	0	-	0	4034			0	0	0	0	0	0	0
Louisiana	24448	0	0		0	0	0	0	0	0	8994	-			0	1700	0	5441	0	0
Maine	3471	0	580		0	0	0	0	0	0	0		-	0	0	0	0	0	0	0
Maryland	5707	0		0	4485	0	0	0	0	0	0			0	0	0	0	0	0	0
Massachusetts	13809	0	0	0	13809		0	0	0	0	0	-	-	0	0	0	0	0	0	0
Michigan	13943	0	0	732	0	11209	-	0	0	997	0				0	0	0	-	0	0
Minnesota	9914	0	5823	0	1321	0	0	0	0	0	-	_		0	0	0	1733	0	0	0
Mississippi	36160	-		0	2272	-		0	2310	0	816	-	-	0	2295	1114	2535	-	2782	0
Missouri	12008	673	0	0	0	2229	0	2904	0	-	0		0	-	0	573	0		0	0
Nebraska	10480	291	1577	0	1628	0	0	0	2057	0	0		-	0	602	2077	1181		0	0
New Hampshire	6045	0			0	0	-	0	0	143	0		0	-	0	0	0	0	0	0
New Jersey	15972	-	0		0	0		0	1711	0	2090	0	-	0	235	-	-	-	0	0
New Mexico	2564	0	0	0	0	0		0	0	0	0			0	0	0	0		0	0
New York	5044	0	×	0	1689	0	0	0	0	0	0	-	-	0	0	0	0		0	0
North Carolina	32422	13694	_	0	4935	0	-		0	0	0		0		0	895	0		0	0
North Dakota	20420	0	0	0	4355	3468	0		0	4884	0		-		0	1966	0		0	0
Ohio	11950	0	1822	0	1997	0	-	0	0	0	-	0		0	256	1043	-		0	349
Oklahoma	16176	2697	1162	0	2441	0	0	-	0	2879	0	-		-	0	978	0	-	519	0
Pennsylvania	18699	0	0	-	2339	0	0	0	2255	0	1373	0	-	0	0	0		-	0	0
Rhode Island	7963	0	0		2339	-	0	4363	0	0	0	-		0	0	0	0	0	0	0
South Carolina	14092	0	0	0	0	0	0		2846	-	0	-	-	-	0	1107	0	-	0	0
South Dakota	13991	2462	1197	-	0	5944	0	441	0	715	0			0	0	0	0	0	767	0
Tennessee	11342	2269		0	3907	0		0	0	0	0			0	0	0	0	0	0	0
Texas	3598	0		0	0	0	0	0	0	0	0	-	-	0	0	0	0	-	0	0
Utah	7995	0	0	0	0	3296	0		0	-	0			0	0	0	0	-	0	0
Vermont	7813	0	905	0	4344	3290 0	-	2580	0	0	0	-		0	0	0	0	~	0	0
Virgin Islands	258	0	241	0	0	0	17	0	0	0	0			0	0	0	0	0	0	0
	1385	0	0	0	0	0	0	0	0	625	0	-	-	0	0	0	0	0	0	0
Virginia Nost Virginia		0	-	0	1571	0	0	•	0		-			-	0	·	0	-	0	0
West Virginia	17339	0	2097 915	0	15/1	0 559	0 1990	1018	2744	2451	0 1628		-	2441 0	0 3587	1975 0	0		0 2160	0
Wisconsin	17526	-		-				-		-		-		-		-	-	-		Ľ.,
Nyoming	2974 Sum of Sum of MaleSmokers by YEAR:	0		0 22959	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0

II.

For example, the gray columns such as "13694" in **North Carolina** row at 1999 column shows that there was an decrease of 35% compared to the target. -35% compared to balanced.

p2) The coefficient matrix provides an insightful overview of coefficient consumption across various locations over the span of 17 years, from 1999 to 2017. In this matrix, each row corresponds to a distinct location, and the columns represent individual years. Two key fields are presented: 'MaleSmokers' and 'SmokersTotal' " with the aggregation function set to "Sum" for both. This matrix helps us not only visualize the variations in sample size across the years for different locations but also the cumulative data value for coefficient consumption.

Bala	cing co	efficients	Eq	port to Ex	cel																																								
Step	ki1	ki2	ki3	ki4	ki5	ki6	ki7	ki8	ki9	ki10	ki11	ki12	ki13	ki14	ki15	ki16	ki17	ki18	ki19	ki20	ki21	ki22	ki23	ki24	ki25	ki26	ki27	ki28	ki29	ki30	ki31	ki32	ki33	ki34	ki35	ki36	ki37	ki38 ki	39 ki	40 1	ki41 k	142	ki43	ki44	ki45
1	0.9999	6 0.99936	1.00019	0.99921	1.00071 0	0.99949 (9994	0.99994	0 99982	2 1.00019	1.00436						0.99996						6 0.99984	1.00068	1.00026	0.99961	0.99955	0.99843	0 99946	1.0003	0.99968	1.00065	1 0	99907											00226
2	1.0000	2 0.99984	1.00003	0.99972																			1 0.99967		0.99994	0.99988	1.0001	1.00017						.00001				.00005 0.99	982 0.9	9997 1.0	00008 0.9	9978 0	99991 1	00006 1	00007
3	1.0000	2 0.99994	0.99998	0.99987	1.00003 1	1 1	1.00002	1.00003	1.00014	4 0.99999	1.00003	0.99999	0.99985	1.00003	1.00003	1.00002	1.00001	1.00005	1.00003	1.00015	5 1.0000	3 1.0000	3 0.99984	1.00004	0.99999	0.99994	1.00003	1.00006	1.00004	0.99998	1.00003		0.99995 1				0.99993 1				00003 0.9				
4	1.0000	2 0.99997	0.99998	0.99994	1.00002 1	1 1	1.00002	1.00002	1.00005	5 0.99999	1.00002	0.99999	0.99992	1.00002	1.00002	1.00002	1	1.00003	1.0000	1.00006	5 1.0000	2 1.0000	2 0.99992	1.00002	1	0.99996	1.00002	1.00002	1.00002	1.00002	1.00002	1	0.99997 1	.00002				99999 0.99						00002 0	99998
5	1.0000	1 0.99998	0.999999	0.99997	1.00001 1	1 1	1.00001	1.00001	1.00002	2 0.99999	1.00002	1 (0.99996	1.00001	1.00001	1.00001	1	1.00002	1.0000	1.00002	2 1.0000	1 1.0000	2 0.99996	1.00001	1	0.99998	1.00001	1.00001	1.00001	1.00002	1.00001	1	0.99998 1	.00001	0.99999	1.00002	0.99997 0	99999 0.99	998 1.0	0001 1.0	00001 0.9	9996 1.	00002 1	00001 0	99998
6	1.0000	1 0.99999	0.999999	99998	1.00001 1	1 1	1.00001	1.00001	1.00001	11	1.00001	1 (0.99998	1.00001	1.00001	1.00001	1	1.00001	1	1.00001	1 1.0000	1 1.0000	1 0.99998	1.00001	1	0.99999	1.00001	1	1.00001	1.00001	1.00001	1	0.999999 1	.00001	1	1.00001	0.99998 1	0.99	999 1.0	0001 1.0	00001 0.9	9998 1.	00001 1	000010	999999
7	1	0.99999	1 (0.99999	1 1	1 1	1.00001	1	1	1	1.00001	1 (0.99999	1	1	1	1	1.00001	1	1	1.0000	1 1.0000	1 0.99999	1	1	0.99999	1	1	1	1.00001	1	1	0.99999 1	.00001	1	1	0.99999 1	0.99	999 1	1	0.9	9999 1	00001 1	0	999995
8	1	1	1 (0.99999	1 1	1 1	l	1	1	1	1	1 (0.999999	1	1	1	1	1	1	1	1	1	0.99999	1	1	1	1	1	1	1	1	1	1 1		1	1	0.99999 1	1	1	1	0.9	9999 1	1	1	
Resu	: 1.0000	4 0.99907	1.00016 0	0.99867	1.00086 0	0.99952 0	0.99945	1.00009	1.00041	1 1.00015	1.00446	1.00009	0.99986	1.0003	0.99995	0.99951	1.00005	1.00026	1.00043	1.00113	0.9999	6 1.0010	6 0.99919	1.00084	1.00019	0.99935	0.99972	0.99869	0.99965	1.00003	0.99981	1.00059	0.99983 0	.99916	0.9999	1.00084	0.99943 0	.99992 1	0.9	9962 1.0	00112 0.9	9936 1.	00054 0.	99392 1	.00225

p3) Target Matrix: The target matrix is a pivot table where the rows represent different Locations and the columns represent different years. The values in the matrix are the sum of the 'SmokersTotal' value' for each combination of Location and year. This matrix gives us a snapshot of the sample size in each location, broken down by years, for the Data value.

LocationDesc	Sum of Sum of SmokersTotal by LocationDesc	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Alabama	27608	5489	0	0	2891	0	2722	0	3635	0	1644	0	1599	0	2954	0	3689	0	2985	0
Arizona	14043	0	1059	0	0	2427	0	1900	0	3291	0	1316	0	1640	0	652	0	1124	0	634
Arkansas	25904	3182	2435	0	0	0	0	8512	0	6752	0	0	5023	0	0	0	0	0	0	0
California	5492	0	1713	0	0	3779	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colorado	5225	0	5225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Connecticut	24181	0	5081	0	3344	0	0	3367	0	2514	0	2081	0	3239	0	3446	0	1109	0	0
Delaware	25561	0	5554	0	1420	0	4329	0	0	0	1467	0	2800	0	2666	0	1943	0	5382	0
District of Columbi	a 5536	0	5536	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lorida	7428	0	0	5492	1936	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Georgia	28781	7740	b	2153	0	0	0	5696	0	0	0	2414	0	5920	0	3175	0	1483	0	200
Guam	213	0	0	0	213	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lawaii	28005	0	2597	0	0	1133	0	1746	0	0	0	1513	0	3183	0	1133	0	16700	0	0
laho	7144	0	0	990	0	6154	0	0	0	0	0	0	0	0	0	0	0	0	0	0
linois	31191	0	0	0	14319	0	0	1268	3940	0	0	0	4942	0	0	3246	0	3476	0	0
ndiana	20906	0	-	0	0	0		0		0	2748	0			0		0	0	1123	0
owa	19484	0	2089	0	3289	0		0	3104	0	2378	3088	0	0	0	0	0	0	0	0
lansas	12667	639		0	1142	0	0	0		0	0		0		0	-	0	0	0	0
Centucky	24217	0		0	4009	0	2816	0	2934	0	6201	0	5861	0	0	0	0	0	0	0
ouisiana	37578	0	0	2287	0	0	0			0	13824		0		0	2608	0	-	0	0
Naine	5336	0	889	4447	0	0	0	0		0	0	0	0		0	0	0	0	0	0
laryland	8768	0		0	6894	0	0			0	0	0	0	-	0	0	0	0	0	0
lassachusetts	21239	0	0	0		-	0	-	0	0	0	0	0	-	0	0	0	0	0	0
Nichigan	21421	0	0	1116	0	17230	0	0	0	1532	0	0	0	1543	0	0	0	0	0	0
linnesota	15244	0	8954	0	2033	0	0	0	0	0	1595	0	0	<u> </u>	0	0	2662	0	0	0
lississippi	55577	4339		0	3489	7314	1599	0	-	0	1253	-	-	-	-	1714	3897	11123	-	0
lissouri	18444	1032	0	0	0		0	4465	0	2652	0		0	<u> </u>	0	879	0	2189		0
lebraska	16096	448	-	0	2496	0	0	0	3160	0	0	0	0		924		1813	1638		0
lew Hampshire	9274	0	_	3162	0	0	-	0		216	0	1914	0	-	0	0	0	0	0	0
lew Jersev	24529	-	0		0	0		0	-	0	3213	0	-		360	3752	3327	-	0	0
lew Mexico	3941	0	0	0	0	0		0		0	0	0	0	<u> </u>	0	0	0	0	0	0
lew York	7748	0	-	0	2594	0	0	-	-	0	0	-	0	-	0	0	0	0	0	0
lorth Carolina	49851	21061		0		0	2409	-	-	0	0	-	0	2926	-	1371	0	4295	0	0
lorth Dakota	31377	0	0	0	0		0		-	7505	0		0		0		0		0	0
Dhio	18345	0	2792	0	3062	0			0	0	2806		2323		392		2351	0	0	537
Oklahoma	24854	-		0	3750	0	0	-	0	4426	0		0	5052		1503	0	0	796	0
Pennsylvania	28745	0	0	10927		0	0	0	3469	0	2108	0	2046	<u> </u>	0	0	-	3518	0	0
Rhode Island	12233	0	0	1665	0	-	0	-	0	0	0	0	0	-	0	0	0	0	0	0
South Carolina	21651	0	0	0	0	0	0		4372	-	0	-	0	-	0	-	0	916	0	0
South Dakota	21506	3784	-	868	0	-	0		0		0		0		0	0	0	0	1178	0
ennessee	17421	3478		0	-	0			0	0	0		0	-	0	0	0	0	0	0
exas	5534	0		0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	0
tah	12283	0	0	0	0	-	0	-	0	-	0	-	0	-	0	0	0	0	0	0
ermont	12012	0	-	0	6683	0	-	_	0	0	0	0	0		0	0	0	0	0	0
irgin Islands	394	0		0	0	0	26	0	0	0	0	0	0	-	0	0	0	0	0	0
irginia	2133	0		0	0	0	0		-	963	0	-	0	-	0	0	0	0	0	0
Vest Virginia	26634	0	-	0	2413	0	0	-	0		0		0	-	0	-	0	2640	0	0
Visconsin	26916	0		0	2365	858	-	0	-	0	2499	02.54	3686		-	0	0	0	3317	0
Vyoming	4575	0		0	2305	0	0	0	4210	0	0	0	0	-	0	0	0	0	0	0
fotal: 875245	Sum of Sum of SmokersTotal by YEAR:	-	4575 94092	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-

For example, the light gray columns such as "7740" Georgia at 1999 show that there was a increase of <1% compared to the balance. +35% compared to starting.

p4)Balanced Matrix: The balanced matrix is the result of balancing the sums of rows and columns of the starting matrix to match those of the target matrix. This process involves adjusting the values in the starting matrix in a way that the Data value for each Location And each Year matches the corresponding data value in the target matrix. The balanced matrix represents a transition. The balanced matrix represents the adjusted data value distribution in 1999-2017, where the data value for each Location and each Year matches the corresponding data value in the target matrix (1999-2017). This matrix represents a transition from the data value distribution in 1999-2017 to the distribution in 1999-2017, while preserving the row and column from the target matrix.

	Sum of Sum																			
LocationDesc	of SmokersTotal by LocationDesc	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	201
Alabama		5490.9	-	þ			2722.09		3634.4	0	1646.76		1598.93		2955.76		3685.64			0
Arizona		0	1062.16	P	0	2120.00	0	1899.51	0		0	1317.09	0	1638.12	0	652.29	0	1123.87	0	633.8
Arkansas		0.00.1	2435.5	•	0	0	0		0	0110.10	0	0	0020.20	-	0	0	0	0	0	0
California				0	0	3778.19	0	-		0	0	0	-	-	0		0		0	0
Colorado		0	5224.96		0	0	0	-	0	0	0	0	•		0	0	0		0	0
Connecticut		0	5081.24	0	3344.66	0	0	3362.86	0	2514.35	0	2082.47	0	3239.28	0	3444.06	0	1112.08	0	0
Delaware	25560.95	0	5550.82	0	1428.08	0	4327.31	0	0	0	1466.17	0	2803.02	0	2665.39	0	1943.85	0	5376.29	0
District of Columbia		0	5535.96		0	0	0	Č .	-	0	0	0	·	0	0	0	0	0	0	0
Florida		×			1936.69	-	0	-			0	0			0	0	0		0	0
Georgia	28781.04	7732.58	0	2152.95	0	0	0	5697.08			0	2417.3	0	5920.26	0	3178.96	0	1481.69	0	200.2
Guam	213	0	-	0	212.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hawaii	28005.02	0	2595.09	0	0	1135.07	0	1746.19	0	0	0	1519.73	0	3187.36	0	1133.83	0	16687.73	0	0
Idaho		0		990.18	0		0	×	0	0	0	0	×	-	0	0	0		0	0
Illinois	31190.95	0	0	0	14313.02	0	0	1273.04	3941.15	0	0	0	4939.43	0	0	3245.51	0	3478.79	0	0
Indiana	20905.96	0	4237.05	0	0	0				0		0	3369.63	0	0	2874.17	0	0	1123.45	0
lowa	19483.97	0	2088.41	0	3287.88	0	5533.53	0	3105.91	0	2381.34	3086.88	0	0	0	0	0	0	0	0
Kansas	12667.01	640.84	1691.57	0	1146.21	0	0	0	0	0	0	7882.53	0	0	0	1305.84	0	0	0	0
Kentucky	24216.95	0	2397.29	0	4012.58	0	2816.45	0	2934.57	0	6198.18	0	5857.85	0	0	0	0	0	0	0
Louisiana	37577.99	0	0	2287.21	0	0	0	0	0	0	13821.91	3019.05	0	7471.67	0	2612.76	0	8365.37	0	0
Maine	5336	0	892.1	4443.88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maryland	8767.98	0	1877.35	0	6890.61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Massachusetts	21238.95	0	0	0	21238.92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Michigan	21421.1	0	0	1122.97	0	17224.17	0	0	0	1530.83	0	0	0	1543.1	0	0	0	0	0	0
Minnesota		0	8953.71	0	2031.33	0	0	0	0	0	1594.29	0	0	0	0	0	2664.62	0	0	0
Mississippi	55576.99	4335.97	5241.44	0	3491.39	7314.12	1597.23	0	3548.93	0	1253.69	2489.6	1775.83	0	3526.26	1711.68	3895.17	11119.14	4276.53	0
Missouri	18444.05	1033.56	0	0	0	3425.78	0	4460.6	0	2653.71	0	1514.01	0	2286.65	0	879.69	0	2190.03	0	0
Nebraska	16095.98	447.06	2422.12	0	2500.57	0	0	0	3158.74	0	0	0	0	0	924.53	3189.84	1813.82	1639.28	0	0
New Hampshire	9274	0	1588.03	3158.74	0	0	810.46	0	0	219.46	0	1911.97	0	1585.32	0	0	0	0	0	0
New Jersey	24528.98	3731.46	0	2158.01	0	0	1627.1	0	2627.27	0	3209.35	0	1645.92	0	360.88	3747.11	3324.88	2096.98	0	0
New Mexico		0	0	0	0	0	3940.96		0	0	0	0	0	0	0	0	0	0	0	0
New York	7747.99	0	5153.44	0	2594.52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
North Carolina	49851.01	21056.15	0	0	7586.54	0	2409.82	4887.41	0	0	0	5310.1	0	2927.52	0	1375.71	0	4297.74	0	0
North Dakota	31377.08	0	0	0	0	5332.53	0	2434.21	0	7503.97	0	5481.29	0	6345.42	0	3019.7	0	1259.94	0	0
Ohio	18344.97	0	2796.87	0	3065.66	0	2477.08	0	0	0	2805.65	0	2317.27	0	392.94	1600.95	2351.6	0	0	536.93
Oklahoma	24854.02	4144.19	1785.05	0	3750.03	0	0	1659.81	0	4423.75	0	1742.23	0	5049.07	0	1502.29	0	0	797.59	0
Pennsylvania		0	0	10921.19		0	0			0	2110.85	0			0	0	3084.36		0	0
Rhode Island			0		0	3865.72	0		0	0	0	0			0	0	0		0	0
South Carolina		-	-	0	0	0	0		•	1925.34	0	4223.5	0	6000.28	0	-	0	-	0	0
South Dakota		3783.47	1839	870.56	0	9141.33	0		0		0	2916.29			0	0	0	0	- 1178.82	0
Tennessee				0	-		-		0	0	0	0		-	0		0		0	0
Texas		0		0	0		0	0	0	0	0	0					0		0	0
Utah		0		0	0	5065.77	0	3972.23	0	3245.03	0	0	-	-	0	0	0	-	0	0
Vermont		0	1391.14	0	6677.83	0	3942.97		0	0	0	0	0	0	0	0	0	0	0	0
Virgin Islands		0		0	0	0	25.97	0	0	0	0	0	-	-	0	0	0	-	-	0
Virginia		0		0	0	-	0	0	0	-	0	1170.37	-	-	0	0	0	-	0	0
West Virginia		0	3220.69	-	2412.95	-	0	-	0		0	6248.54	-	-	0	-	0	-	-	0
Wisconsin		0		0	2366.67		3057.37		4213.22	0	2499.77	0		0		0	0	0		0
Wyoming		0	4574.97		0		0	-	9213.22	0	0	0		v	0		0		0	0
Total:	Sum of Sum				-		-	-	•		-	-	-	-		-			-	-
875243.95	SmokersTotal by YEAR:	59064.94	94091.99	35261.95	106774.94	05/21.95	42235.93	51361.93	3/10/.94	39881.97	41/35.93	54332.95	35067.94	50943.93	16333.93	40207.96	22763.94	01926.96	19055.94	1370.9

For example, Arizona in 2000 shows that around "1062" was a increase of <1% compared to the target. +35% compared to starting. In addition, New Hampshire in 2007 shows that around "219" which was <1% difference compared to the

target. +35% compared to starting.

2b) Field2 Value-Based Matrix Generation: This scenario uses the initial value of field2 to generate a starting matrix of field1 values. Similarly, the target value of field2 is used to produce a target matrix.

t Scenario: 2b: Balancing matrix of aggregated field1 for iterations of starting and target values of the field2 nario 2b: The starting value of field2 to get the Starting matrix of field1 values and target value of field2 to get Target matrix	~
atrix rows by: LocationDesc v olumns by: MeasureDesc v	Steps: 100
atrix items by field1: SmokersTotal	Precision:
erations by the field2: YEAR starting value: 1999 and target value: 2014	Partial rows/columns: 0,0

p1) The starting balance scenario is a crucial technique for creating a matrix based on the initial and target values of field. In this specific scenario, we organize the data in rows according to different locations, and columns are structured by the measure description. The "SmokerTotal" in field 1 is used as the value of interest, and we apply the summation function to aggregate the data. The iterative aspect of this process is defined by field 2, which changes as we transition in the years 1999 and year 2014. This approach helps us balance and compare sample sizes across different locations and measure descriptions, making it a valuable tool for analyzing changes and trends over the specified time frame, ultimately aiding in data-driven decision-making and insights.

LocationDesc	Sum of Sum of SmokersTotal by LocationDes	Percent of Current Smokers Who Want to Qu	uit Quit Attempt in Past Year Among Current Cigarette Smoke	rs Smoking Statu	s User Status
Alabama	15539	15539	0	0	0
Arkansas	8006	0	0	0	8006
Delaware	0	0	0	0	0
Georgia	28781	2234	4113	15837	6597
Kansas	12667	1407	856	5077	5327
Minnesota	0	0	0	0	0
Mississippi	47806	0	2143	18149	27514
Missouri	17006	0	1029	7267	8710
Nebraska	16096	3030	2523	3850	6693
New Jersey	24529	2180	2608	10349	9392
North Carolina	49851	3467	1728	32146	12510
Ohio	0	0	0	0	0
Oklahoma	24854	1864	2802	8881	11307
Pennsylvania	0	0	0	0	0
South Dakota	21506	684	6157	8201	6464
Tennessee	17421	2988	748	6508	7177
Total: 284062	Sum of Sum of Smokers Total by MeasureDesc	: 33393	24707	116265	109697

Balanced, precision: 0.84342, steps: 96, maximum difference of cells in balancing and target matrixs = 17690.98, maximum difference of cells in balancing matrixs = 32146.00

participants who were "currently smoking" were the majority in North Carolina in 1999

p2)The process of balancing coefficient levels within a dataset is essential for understanding and comparing data across different locations and measure descriptions. In this specific scenario, we organize the data with rows representing various locations, while columns are structured by measure description. The "SmokerTotal Size" in field serves as the focal point, and we apply the summation function to aggregate these values. The iterative aspect of the analysis is driven by field2, with a transition occurring in the years 1999 and year 2014. This iterative approach allows us to assess and balance coefficient levels within different locations and measure descriptions, making it a valuable technique for evaluating how coefficient-related factors change over this specific time frame. Such insights can be pivotal in understanding trends, potential issues, or areas that require attention, contributing to informed decision-making and more comprehensive data analysis.

Balan	ing coeffici	ients	Export to Exce	1																	
Steps	ki1	ki2	ki3	ki4	ki5	ki6	ki7	ki8	ki9	ki10	ki11	ki12	ki13	ki14	ki15	ki16	- kj1	kj2	kj3	kj4	Precision
	2.51232	0	8648657.0622		0	5388927.9733				37 1.41408		6485166.8637		10161685.5545		0					122805.54923
	2.32574	0.85603	1.0786	0.7992	0.82497				0.9720	06 0.82487	0.73118	1.0786	0.83962	1.0786	0.89263	0.85323					47022.65158
	1.71917	0.8875	0.96933	0.92134	0.9196	0.96933	0.89917	0.90104	10.9411	3 0.91866	0.91442	0.96933	0.91542	0.96933	0.92049	0.92887	0.66689	1.04187	1.06741	1.07324	32002.17432
	1.49951	0.93176	0.96168	0.94196	0.94273	0.96168	0.93452	0.93495	0.9512	27 0.94175	50.94008	0.96168	0.94056	0.96168	0.94016	0.9471	0.71508	1.04365	1.0532	1.05535	25528.02554
;	1.39845	0.94755	0.96291	0.95225	0.95293	0.96291	0.9486	0.94876	0.9575	51 0.95232	20.95138	0.96291	0.95172	0.96291	0.95111	0.95537	0.74496	1.04048	1.04542	1.04653	21933.29952
;	1.34234	0.95554	0.9648	0.95825	0.95872	0.9648	0.95609	0.95618	0.9615	53 0.95833	30.95775	0.9648	0.95797	0.9648	0.95751	0.96023	0.76481	1.03766	1.04063	1.0413	19701.54428
,	1.30751	0.96034	0.96641	0.96207	0.96241	0.96641	0.96067	0.96073	3 0.9642	26 0.96214	10.96175	0.96641	0.96191	0.96641	0.96158	0.96341	0.77863	1.03552	1.03746	1.0379	18215.1385
3	1.28431	0.96349	0.96769	0.96467	0.96491	0.96769	0.96371	0.96374	0.9661	19 0.96472	20.96445	0.96769	0.96456	0.96769	0.96432	0.9656	0.78857	1.03392	1.03526	1.03556	17177.51948
)	1.26811	0.96566	0.96867	0.9665	0.96667	0.96867	0.96581	0.96584	0.9676	6 0.96654	10.96634	0.96867	0.96642	0.96867							16428.96552
0	1.25643	0.96722	0.96944	0.96783	0.96796	0.96944				64 0.96786			0.96778	0.96944	0.96764	0.96833					15875.94826
1	1.2478	0.96837	0.97003	0.96882	0.96892	0.97003	0.96845	0.96846	0.9694	13 0.96884	10.96874	0.97003	0.96878		0.96868						15460.12277
2	1.24131	0.96923		0.96957						0.96959			0.96954								15143.25901
13	1.23636	0.96988		0.97014	0.9702	0.97085				5 0.97016			0.97012	0.97085	0.97006	0.97037	0.81132	1.03015	1.03045	1.03052	14899.31446
4	1.23255	0.97038	0.97113	0.97058	0.97063	0.97113				36 0.9706			0.97057								14709.98831
5	1.22959	0.97077	0.97136	0.97093			0.9708	0.9708	0.9711	5 0.97094	10.9709	0.97136	0.97092	0.97136							14562.09278
6	1.22728	0.97107	0.97153	0.9712	0.97123	0.97153	0.97109	0.9711	0.9713	37 0.9712	0.97117	0.97153	0.97119	0.97153	0.97116	0.9713	0.81601	1.02936	1.0295	1.02954	14445.92799
17	1.22547	0.97131		0.97141						54 0.97141			0.9714								14354.23803
8	1.22403	0.9715	0.97178	0.97158						58 <mark> 0.97158</mark>			0.97157								14281.51756
9	1.22289	0.97165	0.97187	0.97171	0.97172	0.97187	0.97166	0.97166	0.9717	79 0.97171	10.9717	0.97187	0.9717	0.97187	0.97169	0.97176	0.81833	1.02896	1.02904	1.02905	14223.53765
20	1.22198	0.97177	0.97195	0.97182	0.97183	0.97195	0.97178	0.97178	3 0.9718	38 0.97182	20.97181	0.97195	0.97181	0.97195							14177.01277
21	1.22125	0.97186		0.9719						95 0.9719			0.9719								14139.36133
2	1.22065	0.97194	0.97205	0.97197	0.97198	0.97205	0.97194	0.97195	0.9720	0.97197	0.97196	0.97205	0.97197	0.97205	0.97196	0.972	0.81953	1.02876	1.0288	1.0288	14108.52968
3	1.22016	0.972		0.97203	0.97203	0.97209				06 0.97203			0.97202								14082.85964
24	1.21975	0.97205	0.97213	0.97207	0.97208	0.97213				0.97208			0.97207	0.97213							14060.98675
5	1.21939	0.9721	0.97216	0.97212	0.97212	0.97216	0.9721	0.9721	0.9721	14 0.97212	20.97211	0.97216	0.97211	0.97216							14041.75989
6	1.21907	0.97214	0.97218	0.97215	0.97215	0.97218	0.97214	0.97214	0.9721	17 0.97215	50.97215	0.97218	0.97215	0.97218	0.97215	0.97216	0.82041	1.0286	1.02862	1.02862	14024.17594
27	1.21877	0.97217	0.97221	0.97218	0.97219	0.97221	0.97218	0.97218	0.9722	0.97218	30.97218	0.97221	0.97218	0.97221	0.97218	0.97219	0.82059	1.02856	1.02858	1.02859	14007.32461
8	1.21848	0.97221	0.97224	0.97222	0.97222	0.97224	0.97221	0.97221	0.9722	23 0.97222	20.97221	0.97224	0.97222	0.97224							13990.33998
9	1.21818	0.97224	0.97227	0.97225	0.97225	0.97227	0.97224	0.97224	0.9722	26 0.97225	50.97225	0.97227	0.97225	0.97227	0.97225	0.97225	0.82096	1.02848	1.02851	1.02852	13972.35561
30	1.21785	0.97228	0.9723	0.97228	0.97228	0.9723	0.97228	0.97228	3 0.9722	29 0.97228	30.97228	0.9723	0.97228	0.9723	0.97228	0.97229	0.82117	1.02844	1.02847	1.02847	13952.46103
31	1.21748	0.97231	0.97233	0.97232	0.97232	0.97233	0.97232	0.97232	0.9723	33 0.97232	20.97232	0.97233	0.97232	0.97233	0.97232	0.97232	0.82141	1.02839	1.02842	1.02843	13929.65741
32	1.21705	0.97236	0.97238	0.97237	0.97237	0.97238	0.97236	0.97236	0.9723	87 0.97237	0.97237	0.97238	0.97237	0.97238	0.97237	0.97237	0.82169	1.02833	1.02836	1.02837	13902.81063
33	1.21654	0.97241	0.97243	0.97242	0.97242	0.97243	0.97242	0.97242	0.9724	12 0.97242	20.97242	0.97243	0.97242	0.97243	0.97242	0.97242	0.82203	1.02825	1.0283	1.02831	13870.60015
34	1.21592	0.97247	0.97249	0.97248	0.97248	0.97249	0.97248	0.97248	3 0.9724	18 0.97248	30.97248	0.97249	0.97248	0.97249	0.97249	0.97248	0.82244	1.02816	1.02821	1.02823	13831.46255
35	1.21516	0.97255	0.97257	0.97256	0.97256	0.97257	0.97256	0.97256	0.9725	56 <mark>0.9725</mark> 6	60.97256	0.97257	0.97256	0.97257	0.97256	0.97256	0.82295	1.02804	1.02811	1.02813	13783.52867
6	1.21424	0.97264	0.97266	0.97266	0.97265	0.97266	0.97265	0.97265	0.9726	60.97268	0.97265	0.97266	0.97265	0.97266	0.97266	0.97265	0.82357	1.0279	1.02799	1.02801	13724.55458
37	1.2131	0.97276	0.97278	0.97277	0.97277	0.97278	0.97276	0.97277	0.9727	7 0.97277	0.97277	0.97278	0.97277	0.97278	0.97278	0.97277	0.82434	1.02773	1.02784	1.02786	13651.84752
8	1.2117	0.9729	0.97293	0.97292	0.97291	0.97293	0.97291	0.97291	0.9729	0.97291	0.97291	0.97293	0.97291	0.97293	0.97292	0.97291	0.8253	1.02752	1.02765	1.02768	13562.18989
9	1.20997	0.97307	0.9731	0.9731	0.97309	0.9731	0.97308	0.97309	0.9730	0.97309	0.97309	0.9731	0.97309	0.9731	0.9731	0.97309	0.82647	1.02726	1.02742	1.02745	13451.76753
0	1.20785	0.97328	0.97332	0.97332	0.97331	0.97332	0.9733	0.9733	0.9733	31 0.97331	0.97331	0.97332	0.97331	0.97332	0.97332	0.9733	0.82792	1.02694	1.02713	1.02717	13316.11259
1	1.20526	0.97354	0.9736	0.97358	0.97357	0.9736	0.97357	0.97357	0.9735	58 0.97358	30.97358	0.9736	0.97357	0.9736	0.97359	0.97357	0.8297	1.02654	1.02678	1.02684	13150.07689
2	1.2021	0.97387	0.97393	0.97391	0.9739	0.97393	0.97389	0.9739	0.9739	0.9739	0.97391	0.97393	0.9739	0.97393	0.97392	0.9739	0.83188	1.02607	1.02636	1.02642	12947.8587
3	1.19828	0.97426	0.97433	0.97432	0.9743	0.97433	0.97429	0.97429	0.9743	31 0.9743	0.97431	0.97433	0.9743	0.97433	0.97433	0.97429	0.83453	1.0255	1.02585	1.02592	12703.11333
4	1.19369	0.97473	0.97482	0.9748	0.97478	0.97482	0.97477	0.97478	8 0.9747	79 0.97479	0.97479	0.97482	0.97478	0.97482	0.97482	0.97478	0.83774	1.02481	1.02524	1.02533	12409.18382
15	1.18823	0.9753	0.97541	0.97539						87 0.97537			0.97536								12059.48941
6	1.18181	0.97598	0.97611	0.97608	0.97605	0.97611	0.97603	0.97604	0.9760	06 0.97606	0.97606	0.97611	0.97605	0.97611							11648.10049
7	1.17436	0.97678		0.9769	0.97686	0.97693	0.97684	0.97685	0.9768	87 0.97687	0.97688	0.97693	0.97686	0.97693	0.97692	0.97685	0.85153	1.02197	1.02266	1.0228	11170.50312
8	1.16583	0.97771	0.97788	0.97785	0.9778	0.97788				32 0.97782			0.97781	0.97788							10624.51034
9	1.15626	0.97877		0.97893			_			0.9789			0.97889								10011.21117
i0	1.14572	0.97997	0.98019	0.98015						11 0.98011			0.9801	0.98019	0.98018	0.98008	0.87282	1.0179	1.01886	1.01906	9335.77796
1	1.13436	0.98129	0.98154	0.98149	0.98143	0.98154				15 0.98148			0.98144	0.98154							8607.90405
2	1.1224	0.98272		0.98294			_			39 0.98289			0.98288		_						7841.65598
3	1.11011	0.98423		0.98446						11 0.98441			0.98439								7054.62125
4	1.09781	0.98579		0.98602						0.98597			0.98595								6266.40593
5	1.0858	0.98735		0.98758			_			54 0.98753			0.98752								5496.72972
6	1.07435	0.98888		0.98911						06 0.98906			0.98905								4763.49848
7	1.0637	0.99035		0.99056						52 0.99052			0.9905								4081.24151
8	1.05401	0.99172	0.99196	0.99192	0.99185	0.99196	0.99182	0.99184	0.9918	87 0.99187	0.99188	0.99196	0.99186								3460.1802
9	1.04536	0.99296	0.99319	0.99315	0.99309	0.99319	0.99306	0.99308	30.9931	11 0.99311	0.99311	0.99319	0.9931	0.99319	0.99318	0.99308	0.95661	1.00503	1.00579	1.00595	2906.00401
0	1.03778	0.99408	0.99428	0.99424	0.99419	0.99428	0.99417	0.99418	3 0.9942	21 0.99421	0.99422	0.99428	0.9942	0.99428	0.99427	0.99418	0.9636	1.00416	1.00482	1.00496	2420.25087
1	1.03123	0.99507	0.99524	0.99521	0.99516	0.99524				8 0.99518			0.99517	0.99524	0.99523	0.99515	0.96971	1.00341	1.00398	1.0041	2001.083
2	1.02566	0.99591	0.99607	0.99604	0.996	0.99607	0.99598	0.99599	0.9960	0.99601	0.99602	0.99607	0.996	0.99607	0.99606	0.99599	0.97498	1.00278	1.00327	1.00337	1644.22839
3	1.02098	0.99664	0.99677	0.99674	0.99671	0.99677	0.9967	0.9967	0.9967	2 0.99672	0.99673	0.99677	0.99671	0.99677	0.99676	0.99671	0.97945	1.00226	1.00267	1.00276	1343.90172
4	1.01707	0.99725	0.99736	0.99734	0.99731	0.99736				32 0.99732			0.99731								1093.58799
5	1 01384		0 99785	0.99784	0.00701	0.00795	0.0079	0 00701	0 0070	32 0 99782	0 00702	0.00705	0.99781	0.00705	0.00705	0.00701	0.00635	1 00140	1 00176	1 00102	000 00004

p3) The target matrix is a focused analysis of data based on location, measure descriptions, and sample sizes (field1). It utilizes a summation function to aggregate sample sizes and iteratively examines field2 during the transition in the years 1999 and year 2014. This approach offers insights into how "SmokerTotal' changes across locations and measures descriptions during this critical period, providing valuable information for decision-making and dataset understanding.

LocationDesc	Sum of Sum of SmokersTotal by LocationDesc	Who	Quit Attempt in Past Year Among Current Cigarette Smokers	Smoking Status	User Status
Alabama	27608	4963	2810	11836	7999
Arkansas	0	0	0	0	0
Delaware	24465	1275	0	12113	11077
Georgia	0	0	0	0	0
Kansas	0	0	0	0	0
Minnesota	15244	1222	595	9382	4045
Mississippi	55577	7771	2143	18149	27514
Missouri	0	0	0	0	0
Nebraska	6373	0	2523	3850	0
New Jersey	24529	2180	2608	10349	9392
North Carolina	0	0	0	0	0
Ohio	18345	1537	710	8374	7724
Oklahoma	0	0	0	0	0
Pennsylvania	28745	3706	3019	12988	9032
South Dakota	0	0	0	0	0
Tennessee	0	0	0	0	0
Total: 200886	Sum of Sum of SmokersTotal by MeasureDesc:	22654	14408	87041	76783

participants who were "currently smoking and want to quit" were the majority in Mississippi in 2014

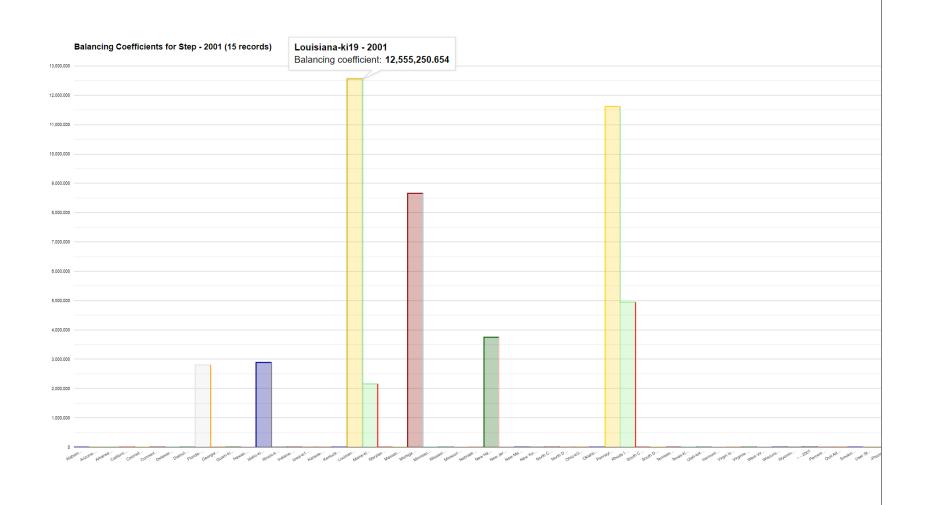
p4) The Balanced Matrix is a comprehensive analysis structured by location and measure descriptions, primarily focusing on field1 'SmokerTotal'. It employs a summation function to aggregate sample sizes while iteratively observing field2 values during the transitional period of 1999 and year 2014. This approach provides a well-balanced perspective on how 'SmokerTotal' evolves across various locations and measures descriptions within this specific timeframe. The resulting matrix offers valuable insights for decision-making and a thorough understanding of the dataset's dynamics during the critical years of 1999 and year 2014.

Balancing M	atrix of Sum	of Smok	ersTotal	Export to	o Excel
LocationDesc	Sum of Sum of SmokersTotal by LocationDesc	Who	Quit Attempt in Past Year Among Current Cigarette Smokers	Smoking Status	User Status
Alabama	27607.7	22653.98	658.54	2437.45	1857.73
Arkansas	0	0	0	0	0
Delaware	24465.04	0.01	3252.33	12037.9	9174.81
Georgia	0	0	0	0	0
Kansas	0	0	0	0	0
Minnesota	15244.03	0	2026.51	7500.74	5716.77
Mississippi	55577.1	0	810.57	25408.52	29358.0 <i>1</i>
Missouri	0	0	0	0	0
Nebraska	6373.01	0	450.98	2547.14	3374.89
New Jersey	24529.04	0	949.03	13938.8	9641.21
North Carolina	0	0	0	0	0
Ohio	18345.03	0.01	2438.75	9026.58	6879.7
Oklahoma	0	0	0	0	0
Pennsylvania	28745.05	0.01	3821.31	14143.85	10779.88
South Dakota	0	0	0	0	0
Tennessee	0	0	0	0	0
Total: 200886.01	Sum of Sum of SmokersTotal by MeasureDesc:	22654.01	14408.02	87040.98	76783

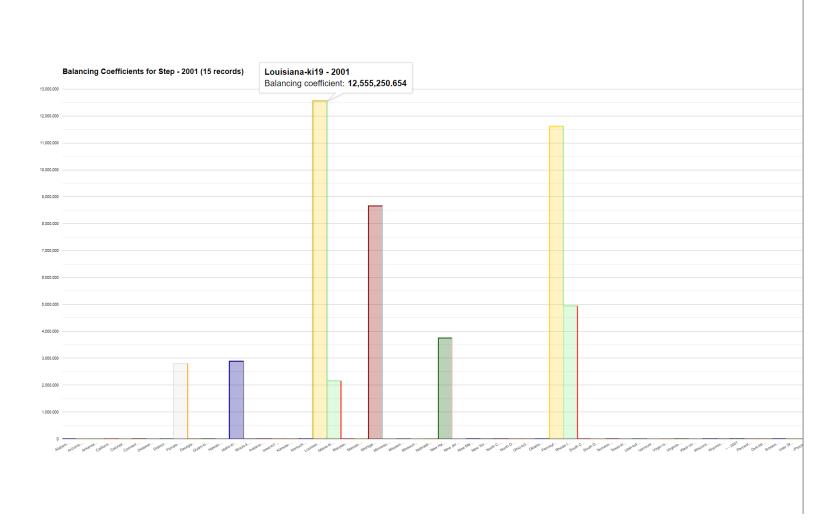
2c) Field2 Value-Based Matrix Generation: This scenario uses the initial value of field2 to generate a starting matrix of field1 values. Similarly, the target value of field 2 is used to produce a target matrix.

Data imported into tobacco_survey_1999_2017 on 11-8-2023 12-48-12 AM - Advanced Analy	¥
Select Scenario: 2b: Balancing matrix of aggregated field1 for iterations of starting and target values of the field2 Scenario 2b: The starting value of field2 to get the Starting matrix of field1 values and target value of field2 to get Target matrix	~
Matrix rows by: LocationDesc Columns by: MeasureDesc	Steps: 100
Matrix items by field1: SmokersTotal	Precision: 1
Iterations by the field2: YEAR starting value 1999 and target value 2014	Partial rows/columns:0,0
(2b) Balancing matrix of aggregated field1 for iterations of starting and target values of the field2	
(2c) Balancing coefficients for matrix of field1 values and all iterations between starting and target of the field2 values	

p1) The Starting Matrix, in the context of Field2 Value-Based Matrix Generation, is a key outcome that reflects the interplay between location, measure descriptions, field1 'SmokerTotal' ', and the summation function. This matrix is constructed through iterative observations of field2 values spanning the years 1999 to 2014. It begins with the initial value of field2 and, based on this foundation, builds a matrix of field1 values. The Starting Matrix serves as the foundation for


further analysis and provides insights into the relationships between location, measure descriptions, and ' 'SmokerTotal' in response to changes in field2 values over this <u>15-year period</u>. It forms the basis for a deeper understanding of the dataset dynamics and can be a valuable tool for decision-making and trend analysis.

Starting Matrix of	f Sum of SmokersTotal where YEAR='1999'	Export to Excel			
LocationDesc	Sum of Sum of Smokers Total by LocationDesc	Percent of Current Smoker	s Who Want to Quit Quit Attempt in Past Year Among (Current Cigarette Smokers Smoking St	atus User Sta
Alabama	15539	15539	0	0	0
Arizona	0	0	0	0	0
Arkansas	-	0	0	0	8006
California		0	0	0	0
Colorado	-	0	0	0	0
Connecticut		0	0	<u> </u>	0
Delaware	-	0	0	0	0
District of Columbia	-	0	0	0	0
Florida		0	0	0	0
	-	2		≥	
Georgia		2234	4113	<u>15837</u>	<u>6597</u>
Guam		0	0	<u>0</u>	0
Hawaii	-	0	0	<u>0</u>	0
Idaho		0	0	<u>Q</u>	0
Illinois		0	0	<u>0</u>	0
Indiana		0	0	0	<u>0</u>
lowa		<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Kansas		<u>1407</u>	856	<u>5077</u>	<u>5327</u>
Kentucky	-	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Louisiana	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Maine	0	0	Q	<u>0</u>	0
Maryland	0	0	0	0	0
Massachusetts	0	0	0	0	0
Michigan	0	0	Q	0	0
Minnesota		0	0	0	0
Mississippi		0	2143	18149	27514
Missouri		0	1029	7267	8710
Nebraska		3030	2523	3850	6693
New Hampshire	0	0	0	0	0
New Jersey		<u>2180</u>	<u>2608</u>	<u>– – – – – – – – – – – – – – – – – – – </u>	<u>9392</u>
New Mexico		0	0	0	0
New York		0	0	0	0
North Carolina		<u>3467</u>	-		<u>0</u> 12510
			<u>1728</u> 0	0	0
North Dakota		0		<u> </u>	<u>×</u>
Ohio		0	0		0
Oklahoma		1864	2802	<u>8881</u>	<u>11307</u>
Pennsylvania	-	0	0	⊻	0
Rhode Island	-	0	<u>0</u>	<u>0</u>	0
South Carolina		0	0	0	0
South Dakota		<u>684</u>	<u>6157</u>	8201	<u>6464</u>
Tennessee		2988	748	<u>6508</u>	7177
Texas	0	0	0	0	<u>0</u>
Utah		<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Vermont		<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Virgin Islands		<u>0</u>	Q	<u>0</u>	<u>0</u>
Virginia		<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
West Virginia	0	0	<u>0</u>	<u>0</u>	0
Wisconsin	0	0	0	0	0
Wyoming	0	0	0	0	0
Total: 284062	Sum of Sum of SmokersTotal by MeasureDesc:	33393	24707	116265	109697


p2) Coefficient Balancing I is a result derived from the Field2 Value-Based Matrix Generation scenario. In this analysis, the focus is on balancing the coefficient -related data, particularly when considering location, measure descriptions, field1 "SmokerTotal', and the summation function across the years from 1999 to 2014. It involves an iterative process that aims to harmonize and align the field1 values based on the changes in field2 over this <u>15-year period</u>. This balancing helps uncover trends and patterns in coefficient -related data and ensures that the information remains consistent and reliable across different measures and locations. coefficient Balancing I provides a crucial step in refining the dataset and making it more suitable for in-depth analysis and decision-making.

01 0.13509 0 02 3.13666 0 03 0.16386 3 04 364159.99176 0 05 0.10604 1 06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	2159621.32004 0.01111 0.01098 3950020.25665 0.00453 1167111.63437 0.0103 4247746.99708	0 0 0 2 27625 0	0.01111 0.01098 1824057.11071 0.00453 0.01133	0.01111 0.01098 0.01159 0.00453 0.01133	0.01111 3812350.33315 0.01159	3828904.52245 0.01159 2588063.97292	0.01111 0.01098 0.01159	0.01086 2802453.55487 1171090.45427 0.01159 0.00453	1.10863 0 0	0.01086 0.01111 33581.3581 0.01159	0.01098	2888160.44087	0.01111 4917539.35907	0.01098	0.01111 3071826.38813	0 0.458	0.01111 3664939.24614	0.01086 12555250.653 0.01098
02 3.13666 0 03 0.16386 3 04 364159.99176 3 05 0.10604 1 06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	0.01098 3950020.25665 50.00453 1167111.63437 0.0103	0 0 0 2 27625 0	0.01098 1824057.11071 0.00453 0.01133	0.01098 0.01159 0.00453 0.01133	3812350.33315 0.01159 0.00453	3828904.52245 0.01159 2588063.97292	0.01098 0.01159	1171090.45427 0.01159	0 0	33581.3581	0.01098	0.01098	4917539.35907	0.01098	3071826.38813	0.458	3664939.24614	
03 0.16386 3 04 364159.99176 0 05 0.10604 1 06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	3950020.25665 0.00453 1167111.63437 0.0103	0 0 2 27625 0	1824057.11071 0.00453 0.01133	0.01159 0.00453 0.01133	0.01159 0.00453	0.01159 2588063.97292	0.01159	0.01159	0									0.01098
04 364159.99176 0 05 0.10604 1 06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	0.00453 1167111.63437 0.0103	0 2.27625 0	0.00453 0.01133	0.00453 0.01133	0.00453	2588063.97292				0.01159	9301296.3193	2357125 51541	0.01150	0.04450				
05 0.10604 1 06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	1167111.63437 0.0103	2.27625 0	0.01133	0.01133			0.00453	0.00453				2001 120.01041			0.01159		0.01159	0.01159
06 5.42522 0 07 0.18475 4 08 7.95905 0 09 0.09495 2	0.0103	0			5425206.88684					0.00453			0.00453	2116742.90591	1720650.95985	0	2353669.07177	0.00453
07 0.18475 4 08 7.95905 0 09 0.09495 2			0.0103			0.01133	0.01133	0.01133	0.70441	0.01133	6283152.84174		6997958.23199		0.01133		0.01133	0.01133
08 7.95905 0 09 0.09495 2	4247746.99708				0.0103			0.0103		0.0103				5088687.82144			6031065.08635	
09 0.09495 2		3.62638	0.011		7843217.01816			0.011		0.011					0.011			0.011
	0.0103					5804403.74645		0.0103		0.0103				4022868.17932			5745564.90764	
	2383580.02142			0.01162	4846325.43155	0.01162	0.01162	0.01162		0.01162	5411706.68595	0.01162	0.01162	0.01162	3097070.71809	0.61301	0.01162	7531335.2240
10 67.38109 0	0.00875	1.85287	0.00875	0.00875	0.00875	5315763.91777	0.00875	0.00875	0	0.00875	0.00875	0.00875	3895402.23117	4439689.52138	0.00875	0	5261878.38723	0.00875
11 0.17051 2	2992744.78416	0	0.01148	0.01148	6084887.03329	0.01148	0.01148	0.01148	0.74905		6794761.16547	0.01148			0.01148	0		9456097.139
12 769853.72231						2140382.53728		0.00226		0.00226					0.00226			0.00226
13 0.05861 2	2072148.48569	0	0.01136	0.01136	4213118.8426	0.01136	0.01136	0.01136	0.56856	0.01136	4879384.35908	0.01136	5434489.46774	3642507.03128	0.01136	0.45084	0.01136	6547313.1742
14 417442.49591 0	1 0.00238	0	0.00238	0.00238	0.00238	2061652.70349	0.00238	0.00238	0	0.00238	0.00238	0.00238	0.00238	0.00238	0.00238	0	0.00238	0.00238

This matrix serves as a critical snapshot, offering a comprehensive overview of the initial distribution of Data value within the specified district. By breaking down the data into categories and Years, it provides a detailed understanding of how data are allocated across different educational facets. The starting matrix serves as the foundational representation upon which further analysis and exploration are built. It is a pivotal component in our journey to unravel meaningful insights within the dataset.

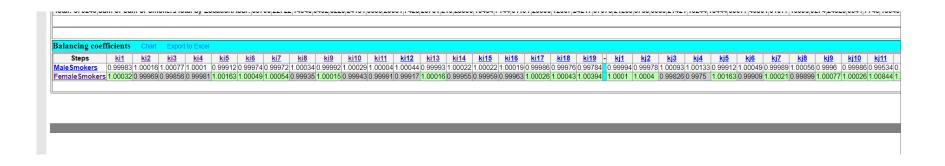
For example, in **2001**, **Louisiana** showed the highest coefficients among other states.

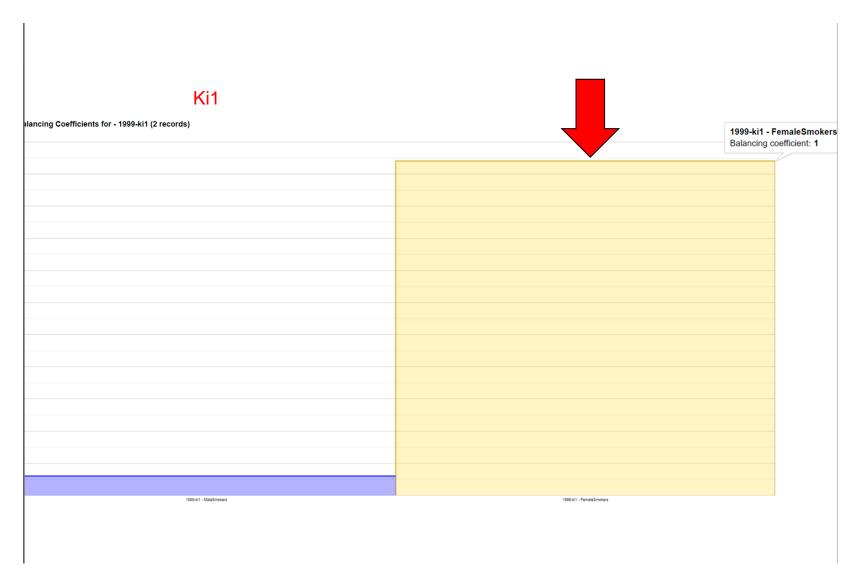

Another example, As "ki10" shows for Georgia, it had the highest coefficient in 2001 and which was around "1.109"

3a)Multiple Target Matrix Coefficient Determination: This scenario seeks to find the balancing coefficients for a starting matrix that aggregates values from field1. The balancing is done against multiple target Matrix that aggregate selected fields.

	Correlation Data and Statistics Report and Charts List of User Dashboards Analytics Matrix Balancing Help OUReports Help Data imported into tobacco_survey_1999_2017 on 11-8-2023 12-48-12 AM - Advanced Analytics - M	Log off Iatrix Balancing
ition	Select Scenario: 3a: Balancing coefficients for matrix of aggregated field1 values and for iterations of multiple selected aggregated fields Scenario 3a: Get balancing coefficients for Starting Matrix of aggregated values of field1 and multiple Target Matrix of aggregated selected fields	~
l nited File	Matrix rows by: YEAR Columns by: LocationAbbr	Steps 100
rt	Matrix items by field1: SmokersTotal	Precision: 1
s cel xrd F	Multiple fields: Select all fields unselect all fields aggregation function: Sum Image: Sum in the select all fields MaleSmokers, FemaleSmokers Image: Sum in the select all fields Image: Sum in the select all fields Image: Sum in the select all fields	Partial rows/columns: 0,0
tistics stics to Excel	(3a) Balancing coefficients for matrix of aggregated field1 values and for multiple selected aggregated fields	

p1) Starting Matrix: The starting matrix is a pivot table created from the original data frame where the index is the 'Year', the columns are 'Locationname', and the values are the sum of the '1999-2017' data value' for all districts. This matrix represents the initial distribution of Data value across different Years and districts. We have multiple selected fields (MaleSmokers, FemaleSmokers)


YEAR	Sum of Sum of SmokersTotal by YEAR	AL	AR	AZ	CA	со ст	DC	E F	L G/	A GU	HI	IA	ID	IL	IN	KS	KY	LA	MA	MD M	E MI	MN	MO	MS	NC	ND	NE	NH	NJ N	NM N	YOH	ок
1999	53576	3182	0	0	0 0	0	0 0	0	774	0 0	0	0	0	0	0	639	0	0	0	0 0	0	0	1032	4339	21061	0	448	0 3	732 0	0	0	4141
2000	99581	5489		1059	17135	225 5081	5536 55	54 0	0	0	2597	2089	0	0	4240		2396	0	0	1874 88	9 0	8954		5242	0			1588 0		51	54 2792	1786
2001	35262	0	0	0	0 0	0	0 0	54	92 2 1 5	30	0	0	990	0	0	0	0	2287	0	0 44	47 1116	0	0	0	0	0		3162 2		0	0	0
2002	106775	2891	0	0	00	3344	0 14	20 19	360	213	0	3289	0	14319	0	1142	4009	0	21239	6894 0	0	2033	0	3489	7591	0	2496	0 0	0	25	94 3062	3750
2003	65722	0	0	2427	37790	0	0 0	0	0	0	1133	0	6154	0	0	0	0	0	0	0 0	1723	00	3427	7314	0	5331	0	0 0	0	0	0	0
2004	42236	2722	0	0	00	0	0 43	29 0	0	0	0	5536	0	0	<u>4448</u>	0	2816	0	0	0 0	0	0	0	1599	2409	0	0	809 1	626 39	9410	2479	0
2005	51362	0	<u>8512</u>	<u>1900</u>	00	3367	00	0	569	<u>6 0</u>	1746	<u>0</u>	0	1268	0	<u>0</u>	0	0	0	00	0	0	4465	0	4887	2435	0	0 0	0	0	0	1657
2006	37108	3635	0	0	00	Q	<u>0</u> 0	0	Q	0	<u>0</u>	<u>3104</u>	0	3940	2105	<u>0</u>	<u>2934</u>	0	0	<u>0</u>	0	0	0	<u>3545</u>	0	0	<u>3160</u>	0 2	628 0	<u>0</u>	Q	0
2007	39882	0	<u>6752</u>	<u>3291</u>	00	2514	0 0	0	0	0	<u>0</u>	0	0	0	0	<u>0</u>	0	0	0	00	1532	<u>0</u>	2652	0	0	7505	0	216 0	0	0	0	4426
2008	41736	1644	<u>0</u>	0	00	<u>0</u>	0 14	<u>67</u> 0	<u>0</u>	0	<u>0</u>	<u>2378</u>	0	0	<u>2748</u>	<u>0</u>	<u>6201</u>	13824	0	00	<u>0</u>	1595	<u>0</u>	<u>1253</u>	0	<u>0</u>	0	0 3	213 0	<u>0</u>	2806	0
2009	54333	<u>0</u>	<u>0</u>	<u>1316</u>	<u>0</u> 0	2081	<u>0</u>	<u>0</u>	241	<u>4</u> 0	<u>1513</u>	<u>3088</u>	0	0	<u>0</u>	<u>7887</u>		3015	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>1515</u>		<u>5311</u>	<u>5484</u>	<u>0</u>	<u>1914 0</u>		<u>0</u>		<u>1743</u>
2010	35068	<u>1599</u>	<u>5023</u>	<u>0</u>	00	<u>0</u>	0 28	<u>00</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	4942	<u>3370</u>	<u>0</u>	<u>5861</u>	0	0	00	<u>0</u>	<u>0</u>	<u>0</u>	<u>1773</u>	0	<u>0</u>	<u>0</u>	0 1	<u>645</u> 0	<u>0</u>	2323	0
2011	50944	<u>0</u>	<u>0</u>	<u>1640</u>	00	3239	00	<u>0</u>	<u>592</u>	00	<u>3183</u>	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	7474	0	00	1543	<u>0</u>	2285	<u>0</u>	2926	<u>6344</u>	0	<u>1585 0</u>	0	<u>0</u>	<u>0</u>	<u>5052</u>
2012	16334	<u>2954</u>	<u>0</u>	<u>0</u>	<u>0</u> 0	<u>0</u>	0 26	<u>66</u> 0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	0	0	0	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>3524</u>	0		<u>924</u>		<u>60</u> 0	<u>0</u>	<u>392</u>	<u>0</u>
2013	40208	<u>0</u>	0	<u>652</u>	<u>0</u> 0	3446	<u>0</u>	0	317	<u>5 0</u>	<u>1133</u>	<u>0</u>	0	3246	<u>2872</u>	<u>1307</u>	0	2608	0	<u>0</u>	<u>0</u>	0	<u>879</u>		<u>1371</u>	<u>3023</u>	<u>3193</u>		752 0	<u> </u>	<u>1603</u>	<u>1503</u>
2014	22764	<u>3689</u>	<u>0</u>	<u>0</u>	<u>0</u> 0	<u>0</u>	0 19	<u>43</u> 0	<u>0</u>	0	<u>0</u>	<u>0</u>	0	0	<u>0</u>	<u>0</u>	<u>0</u>	0	0	<u>0</u>	<u>0</u>	2662	<u>0</u>	<u>3897</u>	<u>0</u>	<u>0</u>	<u>1813</u>		<u>327</u> 0	<u>0</u>	<u>2351</u>	<u>0</u>
2015	61927	<u>0</u>	<u>0</u>	<u>1124</u>	<u>0</u> 0	<u>1109</u>	<u>0</u>	<u>0</u>	<u>148</u>	<u>3 0</u>	16700	00	0	3476	0	<u>0</u>	0	8370	0	00	<u>0</u>	<u>0</u>	<u>2189</u>	<u>11123</u>	<u>4295</u>	<u>1255</u>	<u>1638</u>	0 2	091 0	<u>0</u>	<u>0</u>	<u>0</u>
2016	19056	<u>2985</u>	0	0	00	Q	0 53	<u>82</u> 0	0	0	0	0	0	0	<u>1123</u>	0	0	0	0	<u>0</u>	0	0	0	<u>4275</u>	0	0	0	00	0	<u>0</u>		<u>796</u>
2017	1371	0	<u>0</u>	<u>634</u>	<u>0</u> 0	<u>0</u>	<u>0</u> 0	<u>0</u>	200		<u>0</u>	<u>0</u>	0	0	0	<u>0</u>	<u>0</u>	0	0	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>	0	<u>0</u>	0	<u>0</u> 0	<u>0</u>	<u>. 0</u>	<u>537</u>	0
Total: 87524	5 Sum of Sum of Smokers Total by LocationAbl	or: 30790	22722	14043	5492 5	225 2418 [,]	5536 25	561 74	28 287	81 213	28005	19484	7144	31191	20906	12667	24217	37578	21239	8768 53	36 2142	1 1524	4 18444	55577	49851	31377	16096	9274 2	4529 3	941 77	48 18345	24854



For example, in **2004** "ki6", FemalSmoker were more than MaleSmoker

p2) Balancing coefficient: The result of the IPF procedure is a set of balancing coefficients for each cell in the starting matrix. These coefficients can be multiplied with the corresponding values in the starting matrix to get balanced Matrix that have the same row s as the starting matrix and the same column s as each target matrix.

The Iterative Proportional Fitting (IPF) procedure is applied to the starting matrix to adjust its values to match the row s of the starting matrix and the column s of each target matrix. The IPF procedure iteratively adjusts the rows and columns of the starting matrix until the sum of each row matches the corresponding row and the sum of each column matches the corresponding column.

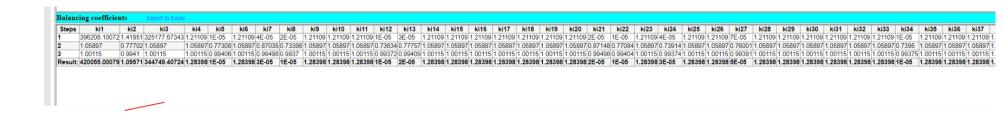
As "Ki1" here shows the Balancing Coefficients for FemalSmoker in 1999

3b) Group Field Row Matrix Iterative Balancing: The starting matrix is organized by a matrix group field for rows and selects multiple columns. The matrix undergoes balancing across iterations that range from the starting to the target value ues of field2.

шg	
Correlation Data and Statistics Report and Charts List of User Dashboards Analytics	Matrix Balancing Help
Data imported into tobacco_survey_1999_2017 on 11-8-2023 12-48-	12 AM - Advanced An
Select Scenario: 3b: Balancing matrix of rows and multiple columns for iterations of starting and target value	
3b: Starting Matrix as rows by matrix group field for rows and selected multiple columns to balance iterations from starting	to target values of the field2
Matrix rows by: LocationDesc	
· · · · · · · · · · · · · · · · · · ·	
Iterations by the field2: YEAR	
starting value: 1999 V and target value: 2017 V	
Multiple fields: 🛛 select all fields 🖓 unselect all fields	
DataValue,SmokersTotal,MaleSmokers,FemaleSmokers	
(3b) Balancing matrix of rows and multiple columns for iterations of starting and target values of the field2	
(3c) Balancing coefficients for matrix of rows and multiple cols for iterations between start and target of field2 values	
Delensing for some of active and a leaves of the starting metric and some of active and a leaves of the target	at us atuins

p1) The starting matrix for this iterative balancing process is organized by location, where the iterations span the years 1999 and 2017. Multiple columns are chosen, including (DataValue, MaleSmokers, FemaleSmokers, SmokersTotal), to

form the basis of the matrix. Through iterative balancing, this matrix will evolve from its initial state in 1999 to its target values in 2017, ensuring that the data remains consistent and accurate across these crucial years.


Starting Matrix	for YEAR = 1999	Export to Excel			
LocationDesc	Sum of row Location	nDesc DataVa	lue Smokers	Total MaleSmo	okers FemaleSmokers
Arizona	0	0	0	0	0
Georgia	394.7	24.7	185	120	65
Ohio	0	0			
Delaware	0	0	-60% cor	npare to targ	et. +86% compare to
South Dakota	876.5	50.5	413	269	144
Wisconsin	0	0	0	0	0
Oklahoma	116.7	20.7	48	31	17
Mississippi	212	0	106	69	37
Alabama	0	0	0	0	0
ndiana	0	0	0	0	0
Pennsylvania	0	0	0	0	0
North Carolina	397.5	1.5	198	129	69
New Jersey	143.3	9.3	67	44	23
Connecticut	0	0	0	0	0
West Virginia	0	0	0	0	0
South Carolina	0	0	0	0	0
Illinois	0	0	0	0	0
Louisiana	0	0	0	0	0
Hawaii	0	0	0	0	0
North Dakota	0	0	0	0	0
lebraska	202.3	36.3	83	54	29
lissouri	406.1	22.1	192	125	67
linnesota	0	0	0	0	0
ansas	123.1	1.1	61	40	21
lew Hampshire	0	0	0	0	0
lichigan	0	0	0	0	0
Arkansas	68.9	2.9	33	22	11
Kentucky	0	0	0	0	0
оwa	0	0	0	0	0
owa Virginia	0	0	0	0	0
Virginia Utah	0	0	0	0	0
utan Rhode Island	0	0	0	0	0
	0	0	0	0	0
Vermont Tennessee	0 504.4	0 4.4	250	163	87
lew Mexico	0	0	0	0	0
/irgin Islands	-	-	0	-	0
alifornia	0	0	0	0	0
laho	0	0	0	0	0
lassachusetts	0	0	0	0	0
/laryland	0	0	0	0	0
lorida	0	0	0	0	0
lew York	0	0	0	0	0
Guam	0	0	0	0	0
laine	0	0	0	0	0
Texas	0	0	0	0	0
Vyoming	0	0	0	0	0
Colorado	0	0	0	0	0
District of Columb	ia 0	0	0	0	0

balanced, precision, 0.13413, steps, 3, maximum unterence of cens in balancing and target matrixs = 07.24, mat

Here is some example of the Starting Matrix result. It shows the number of (DataValue, MaleSmokers, FemaleSmokers, SmokersTotal) in different states in the years 1999 and 2017.

Note: Some states show "0" is displayed because no survey was conducted during the specified years in our example.

p2)In the context of coefficient balancing, the process involves the iterative adjustment of a matrix organized by location, with a focus on years spanning 1999 and 2017. Within this matrix, multiple columns are selected, (DataValue, MaleSmokers, FemaleSmokers, SmokersTotal). Through the coefficient balancing procedure, the matrix evolves across iterations, moving from its initial state in 1999 towards its target values in 2017. This method ensures that the data remains balanced, reliable, and reflective of the changing trends over these years, particularly in the specified location.

p3) The target Matrix in this iterative balancing scenario are organized by location, with iterations spanning from the years 1999 and 2017. Multiple columns are chosen, including (DataValue, MaleSmokers, FemaleSmokers, SmokersTotal) to create the target Matrix. These Matrix represent the desired states of the data over the specified time frame. Through the

iterative process, the data will transition from its initial state in the year 1999 to the target values in 2017, ensuring that the information remains accurate and reliable as it evolves over the years.

LocationDesc	Sum of row LocationDesc	DataValu	e Smokers Total	MaleSmokers	FemaleSmoker
Arizona	1308.6	40.6	634	412	222
Georgia	462.3	62.3	200	130	70
Ohio	1	^		0.40	100
Delaware	(+94% co	mpare	to balanced.	+60% com	npare to star
South Dakota	Ū		U	U	
Wisconsin	0	0	0	0	0
Oklahoma	0	0	0	0	0
Mississippi	0	0	0	0	0
Alabama	0	0	0	0	0
Indiana	0	0	0	0	0
Pennsylvania	0	0	0	0	0
North Carolina	0	0	0	0	0
New Jersey	0	0	0	0	0
Connecticut	0	0	0	0	0
West Virginia	0	0	0	0	0
South Carolina	-	0	0	0	0
Illinois	0	0	0	0	0
Louisiana	0	0	0	0	0
Hawaii	0	0	0	0	0
North Dakota	0	0	0	0	0
Nebraska	0	0	0	0	0
Missouri	0	0	0	0	0
Minnesota	0	0	0	0	0
Kansas	0	0	0	0	0
New Hampshire	0	0	0	0	0
Michigan	0	0	0	0	0
Arkansas	0	0	0	0	0
Kentucky	0	0	0	0	0
lowa	0	0	0	0	0
Virginia	0	0	0	0	0
Utah	0	0	0	0	0
Rhode Island	0	0	0	0	0
Vermont	0	0	0	0	0
Tennessee	0	0	0	0	0
New Mexico	0	0	0	0	0

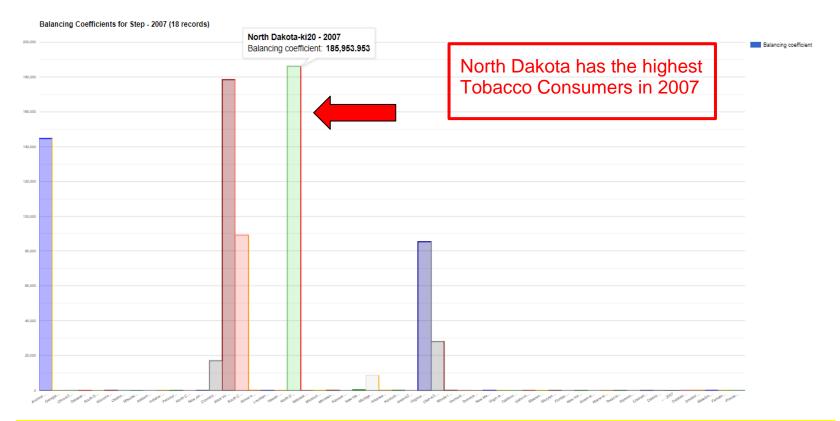
p4)The balanced Matrix, derived through the iterative process, are organized by location and span the years 1999 to 2017. Multiple fields, including (DataValue, MaleSmokers, FemaleSmokers, SmokersTotal) are carefully selected to ensure that the Matrix are consistent and reliable throughout this time frame. This iterative balancing approach helps maintain data accuracy and quality as it transitions from the initial values in 1999 to the target values in 2017, offering a comprehensive and balanced perspective on the dataset.

Balancing Ma	trix Export t	o Excel			
LocationDesc	Sum of row LocationDesc	DataValue	SmokersTotal		FemaleSmoke
Arizona	1308.57	54.6	595.21	417.57	241.18
Georgia	462.36	3.52	287.24		40.89
Ohio	1073 98	44 82	488 51	342 71	197 94
Delawar <1% South D	difference	compar	e to target.	+15% com	pare to sta
Wisconsin	0	0	0	0	0
Oklahoma	0	0	0	0	0
Mississippi	0	0	0	0	0
Alabama	0	0	0	0	0
Indiana	0	0	0	0	0
Pennsylvania	0	0	0	0	0
North Carolina	0	0	0	0	0
New Jersey	0	0	0	0	0
Connecticut	0	0	0	0	0
West Virginia	0	0	0	0	0
South Carolina	0	0	0	0	0
Illinois	0	0	0	0	0
Louisiana	0	0	0	0	0
Hawaii	0	0	0	0	0
North Dakota	0	0	0	0	0
Nebraska	0	0	0	0	0
Missouri	0	0	0	0	0
Minnesota	0	0	0	0	0
Kansas	0	0	0	0	0
New Hampshire	0	0	0	0	0
Michigan	0	0	0	0	0
Arkansas	0	0	0	0	0
Kentucky	0	0	0	0	0
lowa	0	0	0	0	0
Virginia	0	0	0	0	0
Utah	0	0	0	0	0
Rhode Island	0	0	0	0	0
Vermont	0	0	0	0	0
Tennessee	0	0	0	0	0
New Mexico	0	0	0	0	0

3c) The goal in this context is to calculate the coefficients necessary to balance a matrix that is grouped by a specific field for its rows. This matrix also selects columns from various fields. These coefficients need to be determined for all iterations between the initial values and the target values of Field2.

Data imported into tobacco_survey_1999_2017 on 11-8-2023 12-48-12 AM - Advanced Analytics - Matrix	Balancing
Select Scenario: 3c: Balancing coefficients for matrix of rows and multiple cols for iterations between start and target of field2 values 3c: Get balancing coefficients for Starting Matrix as rows by matrix group field for rows and columns from selected multiple fields, for all iterations between starting and target of the field2 values	Ves
Matrix rows by: (LocationDesc 🗸	Steps: 100
Iterations by the field2: YEAR starting value: 1999 and target value: 2017	Precision.1
Multiple fields:select 21 fieldsuperant all fields DataValue,SmokersTotal,MaleSmokers,FemaleSmokers	Partial rows/columns.0,0
(3b) Balancing matrix of rows and multiple columns for iterations of starting and target values of the field2	
(3c) Balancing coefficients for matrix of rows and multiple cols for iterations between start and target of field2 values	

Balancing for sum of rows and columns of the starting matrix and sums of rows and columns of the target matrix: Balanced, precision: 0.13413, steps: 3, maximum difference of cells in balancing and target matrixs = 87.24, maximum difference of cells in balancing and starting matrixs = 595.21


p1), The starting matrix is grouped by location and spans the years from **1999** to **2017**. Multiple fields, including (Total Smokers, DataValue, MaleSmokers, FemaleSmokers) are meticulously selected. The goal is to determine coefficients for all iterations between the initial values in **1999** and the target values of Field2 in **2017**. This approach ensures that the matrix remains well-balanced and reliable across a broad spectrum of data, guaranteeing accuracy and consistency throughout the specified time frame.

Starting Matrix of	LocationDesc and Data	Value,Sm	okersTotal,M	aleSmokers,l	FemaleSmoker
LocationDesc	Sum of row LocationDesc	DataValue	SmokersTotal	Male Smokers	Female Smokers
Arizona	0	0	0	0	0
Georgia	394.7	24.7	185	120	65
Ohio	0	0	0	0	0
Delaware	0	0	0	0	0
South Dakota	876.5	50.5	413	269	144
Wisconsin	0	0	0	0	0
Oklahoma	116.7	20.7	48	31	17
Mississippi	212	0	106	69	37
Alabama	0	0	0	0	0
Indiana	0	0	0	0	0
Pennsylvania	0	0	0	0	0
North Carolina	397.5	1.5	198	129	69
New Jersey	143.3	9.3	67	44	23
Connecticut	0	0	0	0	0
West Virginia	0	0	0	0	0
South Carolina	0	0	0	0	0
Illinois	0	0	0	0	0
Louisiana	0	0	0	0	0
Hawaii	0	0	0	0	0
North Dakota	0	0	0	0	0
Nebraska	202.3	9 36.3	83	<u>0</u> 54	29
Missouri	406.1	22.1	192	125	<u>29</u> 67
Minnesota					
	0 123.1	<u>0</u> 1.1	0	0	0 21
Kansas			<u>61</u>	<u>40</u>	
New Hampshire	0	0	0	0	0
Michigan	-	0	0	0	0
Arkansas	68.9	<u>2.9</u>	33	22	11
Kentucky	0	0	0	0	0
lowa	0	0	0	<u>0</u>	<u>o</u>
Virginia	0	0	<u>o</u>	<u>o</u>	<u>o</u>
Utah	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Rhode Island	0	0	<u>o</u>	<u>0</u>	<u>0</u>
Vermont	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Tennessee	504.4	<u>4.4</u>	250	<u>163</u>	<u>87</u>
New Mexico	0	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>
Virgin Islands	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
California	0	<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>
ldaho	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Massachusetts	0	<u>0</u>	<u>o</u>	<u>o</u>	<u>o</u>
Maryland	0	<u>0</u>	<u>o</u>	<u>0</u>	<u>o</u>
Florida	0	<u>o</u>	0	<u>0</u>	<u>0</u>
New York	0	0	0	0	0
Guam	0	0	0	0	0
Maine	0	0	0	0	0
Texas	0	0	0	0	0
Wyoming	0	0	0	0	0
Colorado	0	0	0	0	0
District of Columbia	0	0	0	0	0
Total: 3445.5	Sum by columns:	173.5	1636	1066	570
	ay account of				

Starting Matrix of LocationDesc and DataValue,SmokersTotal,MaleSmokers,FemaleSmokers for YEAR = 1999

p2)The calculation of balancing coefficients for this specific context involves a matrix grouped by location, spanning the years from **1999** to **2017**. Various fields, such as (Total Smokers, DataValue, MaleSmokers, FemaleSmokers) are meticulously chosen. These coefficients are determined across all iterations, bridging the gap between the initial and target values of Field2. The aim is to achieve a harmonious balance in the dataset, ensuring that it accurately represents the evolving data landscape over this period while considering the multiple facets of the selected fields.

Balazing coefficients Own Experie Souri																																						
Steps	kit	ki2	ki2	<u>bi4</u>	kiś				l ki9				ki12	<u>ki13</u>		<u>ki15</u>	kit6	<u>ki17</u>	ki18	ki19					ki24 ki25					ki10		<u>ki32</u>		<u>ki24</u>		ki36	<u>ki07</u>	kitt
	22.17279	0	7004.50093	57588.02512							29821.07463		0			13560.15485	0.40843	0.40843	0.40843	125264.1652	8 0.40843	0.3028 0	430				3.384	30 31561.	1803 79663.434	750.40843	0.40643		9508.10841			3012.1396	22871.830	76 0.40843
2001 1.	88988	1.04701	1.28988	1.28988	0.0104	4 1.28988	4E-08	2E-0	6 1,25988	1	1.28968	256622.058	159 1E-05			1.28988	1.28988	1.28988	138952,6572	3 1.28988	1.28968	2E-05 1E	5-05 1.2	8988 38	-06 15156.12	68 28796.61	1954 6E-05	1.2898	1.28968	1.28988	1.28988	9081.42498	1.28988	1E-05	1.28988	1.28988	1.28988	15994.5389
2002 0.	00005	0	2002.80917	67.51831	0	20209.0598	1.818	64 0.005	501 26876.64	4898 0	0.30006	155028.431	61 0.0450	3 1E-05	17027.62857	9984.04124	0.30005	47504.83337	0.30005	0.30005	0.30005	0.42117 0	76.	1,17648 0	74661 0.30005	0.30005	1E-05	35232	3895 00871.896	85 0.30005	0.30005	0.30005	318776.7099	4 0.0817	7 0.30005	0.30005	0.30005	0.30005
2003 44	58,10723	0	0.41783	0.41763	1.1227	2 97023 8652	25 1E-05	0.098	58 0.41763	0	0.41763	0.41763	0	1E-05	0.41783	0.41763	0.41783	0.41763		17226.87804	317047.6397	1E-05 0.0	04266 0.4	1763 18	5-05 0.41763	3977,842	276 2E-05	0.4176	0.41703	0.41763	69982.0059	1 14021.6346	7 0.41763	0	0.41763	0.41763	22394.941	46 46449.9275
2004 0.	27919	0	893.39816	335477.9878	\$20	1423.85332	1E-05	0.204	493 4557 720	653 2	20939.02193	0.27919	0.0826	1,13315	0.27919	0.27919	0.27919	0.27919	0.27919	0.27919	0.27919	1E-05 0	0.2	7010 18	-05 2268.4015	8 0.27919	1E-05	125285	13225 25064.005	12 0.27919	0.27919	0.27919	11118.81925	0.0296	5 279263 70	362 3629 43262	0.27919	0.27919
2005 20	3278.7732	4 0.80057	0.56419	0.55419	0.1136	4 0.55419	0.0342	21 1E-0	5 0.58419	0	0.56419	0.56419	0.0836	1 1E-05	2778.65101	37490.63138	12200.87574	10183.6854	0.58419	451.36316	7870.49371	1E-05 2.1	77928 0.5	6419 25	-05 0.56419	0.58419	0.859	48 0.5841	0.58419	0.58419	107381.987	38 23569 1666	7 0.56419	0	0.56419	0.58419	0.58419	0.56419
2006 0.1	17384	1E-05	0.87384	0.87384	0	33688.8557	18 3E-05	4,160	078 1988.14	722 2	212758.97575	53719.5113	8 1E-05	2.1228	0.87384	0.87384	3298.75812	67613.61844	0.87384	0.87384	0.87384	3.43801 1E	E-05 0.8	7384 21	-05 0.87384	0.87384	4E-05	19248	9671 10682.733	25 0.87384	0.87384	0.87384	0.87384	1E-05	0.87384	0.87384	0.87384	0.87384
2007 14	4712.6808	2 1E-05	0.61371	0.61371	0.0070	70.61371	2.344	88 1E-0	6 0.61371	0	0.61371	0.61371	1E-05	2E-05	17045.77908	178405 3276	1 89202 68381	0.61371	0.61371	0.81371	185953.9534	1E-05 0.1	3738 0.8	1371 18	-05 278.1771	8622.617	32 1.525	08 0 6137	0.61371	85397.6654	42 28061 8631	1 0.81371	0.61371	0	0.61371	0.61371	0.61371	0.61371
2008 1	1044	1E-05	1119.0009	29534.63454	4 1E-05	18810.4588	00 4E-05	1.19	595 69631.7	1246 2	251861.4386	74139.1955	5 1E-05	0.23079	1.21044	1.21044	1.21044	1.21044	199540.3491	7 1.21044	1.21044	2E-05 1E	-05 371	77.42400 38	-05 1.21044	1.21044	6E-05	83792	2143 30079.330	1 21044	1,21044	1,21044	1,21044	1E-05	1.21044	1.21044	1.21044	1.21044
2009 14	33.35414	0.07324	0.42157	0.42157	0.2313	70.42157	0.5380	01 0 282	225 0.42157	0	0.42157	0.42157	0.2974	8 1E-05	5817.73152	87539.99627	6397.39679	0.42157	29995.04328	9569.74676	185239.9439	1E-05 0.2	26388 0.4	2157 0	89832 47933 040	77 0.42157	2E-05	0.4215	313377.58	4 21300.0841	11 0.42157	0.42157	0.42157	0	0.42157	0.42157	0.42157	0.42157
2010 0.	7568	0	432045 6329	4 10000 5910	1 0	8502 72846	1E-05	0.343	345 11523.27	7815 1	17409.78247	75371.0391	0	1.02408	0.47568	0.47568	0.47568	27440 50902	0.47568	0.47568	0.47568	1E-05 0	0.4	7568 18	-05 0.47568	0.47568	9.388	5 73040.	2123 0.47508	0.47588	0.47568	0.47568	0.47568	0	0.47568	0.47568	0.47568	0.47508
2011 35	038.8368	4.50059	0.93248	0.93248	0	0.93248	0.4188	88 2E-0	6 0.93246	0	0.93246	0.93246	0.1132	1 2E-05	49103.4058	78442.41904	4825.44085	0.93246	28532 99284	23287.95739	24545.7859	2E-05 0.1	12886 0.9	3248 38	-05 107954.48	516 33568 22	962 SE-05	0.9324	0.93246	0.93246	0.93245	0.93245	0.93246	1E-05	0.93245	0.93246	0.93245	0.93246
2012 01	3589	1E-05	35750.77457	45887.79597	7 0	410736.155	385 3E-05	5.18	202 10926 4	4747 0	0.93589	0.93589	12-05	1.52708	0.93589	0.93589	0.93589	0.93589	0.93589	0.93589	0.93569	0.87645 1E	-05 0.9	3589 38	-05 0.93589	0.93589	4E-05	0.9358	0.93589	0.93569	0.93589	0.93589	0.93589	1E-05	0.93589	0.93589	0.93589	0.93589
2013 31	800 24905	0.0815	55323 54183	0.52303	0	0.62303	0.5336	84 0.25	936 0 52303	2	229950 32054	0.52303	0.2753	94.84311	138238 9378	9 50393 98019	67588.60490	4828.81915	7649.31977	28909.91489	2105.19741	0.04772 0.1	14255 0.5	2303 0	4468 0.52303	0.52303	2E-05	0.5230	0.52303	0.52303	0.52303	0.62303	0.52303	0	0.52303	0.52303	0.52303	0.52303
2014 1	\$8301	1E-05	20816.6361	4749.04248	1E-05	1.58301	5E-05	3.52	542 5975 878	842 1	1.58301	45749.109	1E-05	10.1407	1 1 58301	1.58301	1.58301	1.58301	1.58301	1.58301	1.58301	3.15311 1E	-05 796	65 18721 48	-05 1.58301	1.58301	85-05	1.5830	1.58301	1.58301	1.58301	1.58301	1.58301	1E-05	1.58301	1.58301	1.58301	1.58301
2015 10	5227 9845	2 1 01235	0.5958	0.5955	0	0.5958	2E-05	1.200	358 0 5958	0	0.5958	208937.144	21 0 0835	0.18428	28891.42540	20852 49585	105481.0953	2 22751 99233	12701 21037	153382 3776	1 7385 47172	0 28837 0	143700.5	956 25	-05 0.5955	0.5958	2E-05	0.5958	0.5956	0.5958	0.5958	0.5958	0.5958	0	0.5958	0.5958	0.5958	0.5958
2016 3	6719	3E-05	3.30719	120545 2010	04 0 0383	5 219203 703	57 8 232	87 2.41	101352	25004 4	49076.71244	3.36719	3E-05	8E-05	3.36719	3.36719	3.36719	3.36719	3.38719	3.36719	3.36719	6E-05 3E	-05 3.3	8719 95	-05 3.36719	3.36719	0.000	10 3 3071	3.36719	3.36719	3.36719	3.36719	3.36719	2E-05	3 36719	3.36719	3.36719	3.36719
2017 42			344749 4072			1,28398			5 1,28398			1,28398				1,28398	1,28398	1,28398	1,28398			2E-05 1E			-05 1.28396	1,28395		1,2839		1.28398	1.28398	1,28398	1,28398		1,28398			1,28398

The graph above clearly illustrates that a significant majority of tobacco consumers in 2007 resided in North Dakota.

The graph above clearly illustrates that a significant majority of tobacco consumers in 2007 resided in Wisconsin.

Conclusion:

The provided data appears to be related to youth tobacco use and various related statistics over several years and locations. The data includes information on smoking status, quit attempts, and other measures for different states and years.

In conclusion, a comprehensive analysis of this data would require more context and specific research questions. However, based on the data, it's evident that there is variation in youth tobacco use across different states and years. Some states have high percentages of youth using tobacco, while others have lower rates. Similarly, there are differences in quit attempts and other related measures.

Further analysis and interpretation of this data would be necessary to draw specific conclusions or insights regarding trends in youth tobacco use, and whether there have been changes over the years in different states. Additionally, one would need to consider various factors that might influence these trends, such as anti-smoking campaigns, policy changes, and socioeconomic factors.

Sources: We have obtained our data set from a public website called Data.Gov (Youth Tobacco Survey (YTS) Data - Catalog)

Here is the link for our video: video Matrix Balancing Saleh Alkredes, Faisal Alfawaz _11_20.mp4